Spaces:
Runtime error
Runtime error
E2E generative image
Browse files- ai/__init__.py +1 -0
- ai_tasks/headlines_for_ai_images.py +8 -14
- ai_tasks/headlines_for_images.py +1 -1
- gradio_app.py +124 -13
ai/__init__.py
CHANGED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import image, llm
|
ai_tasks/headlines_for_ai_images.py
CHANGED
@@ -24,24 +24,18 @@ Generate a JSON in the following format:
|
|
24 |
"ad_dimension":
|
25 |
"dimension_to_map":
|
26 |
"headline":
|
27 |
-
"
|
28 |
}}
|
29 |
```
|
30 |
"""
|
31 |
|
32 |
|
33 |
-
def generate_headline_and_prompt(summary: str, dimensions: str) ->
|
34 |
-
|
35 |
-
instructions = PROMPT.format(
|
36 |
-
summary=summary,
|
37 |
-
dimensions=dimensions,
|
38 |
-
)
|
39 |
-
messages = [{"role": "user", "content": instructions}]
|
40 |
-
return _parse_output(llm.next(messages, temperature=0))
|
41 |
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
return
|
|
|
24 |
"ad_dimension":
|
25 |
"dimension_to_map":
|
26 |
"headline":
|
27 |
+
"ai_prompt":
|
28 |
}}
|
29 |
```
|
30 |
"""
|
31 |
|
32 |
|
33 |
+
def generate_headline_and_prompt(summary: str, dimensions: str) -> str:
|
34 |
+
return _generate_headline_and_prompt(PROMPT, summary=summary, dimensions=dimensions)
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
+
def _generate_headline_and_prompt(prompt: str, **kwargs) -> str:
|
38 |
+
print_system("Generating headline for website...")
|
39 |
+
instructions = prompt.format(**kwargs)
|
40 |
+
messages = [{"role": "user", "content": instructions}]
|
41 |
+
return llm.next(messages, temperature=0)
|
ai_tasks/headlines_for_images.py
CHANGED
@@ -26,7 +26,7 @@ Use the following format.
|
|
26 |
```
|
27 |
{{
|
28 |
"reason": Why the image was chosen
|
29 |
-
"
|
30 |
"headline"":
|
31 |
"image_dimensions": The dimensions of the original image
|
32 |
}}
|
|
|
26 |
```
|
27 |
{{
|
28 |
"reason": Why the image was chosen
|
29 |
+
"image_url":
|
30 |
"headline"":
|
31 |
"image_dimensions": The dimensions of the original image
|
32 |
}}
|
gradio_app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
|
|
3 |
import ai_tasks
|
4 |
import code_tasks
|
5 |
import custom_code
|
@@ -31,7 +32,16 @@ def get_images_analysis(images):
|
|
31 |
return custom_code.image_analysis.analyze_images(eval(images))
|
32 |
|
33 |
|
34 |
-
def summarize_text(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
return ai_tasks.text_summary._summarize_text(
|
36 |
prompt,
|
37 |
url=url,
|
@@ -40,11 +50,23 @@ def summarize_text(prompt, url, dimensions, text, images, image_infos, summary):
|
|
40 |
images=images,
|
41 |
image_infos=image_infos,
|
42 |
summary=summary,
|
|
|
43 |
)
|
44 |
|
45 |
|
46 |
-
def get_headline_for_image(
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
prompt,
|
49 |
url=url,
|
50 |
dimensions=dimensions,
|
@@ -52,13 +74,45 @@ def get_headline_for_image(prompt, url, dimensions, text, images, image_infos, s
|
|
52 |
images=images,
|
53 |
image_infos=image_infos,
|
54 |
summary=summary,
|
|
|
55 |
)
|
|
|
56 |
|
57 |
|
58 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
import json
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
with gr.Blocks() as demo:
|
@@ -127,7 +181,7 @@ with gr.Blocks() as demo:
|
|
127 |
with gr.Column():
|
128 |
summary_prompt = gr.Textbox(
|
129 |
ai_tasks.text_summary.PROMPT,
|
130 |
-
label="Instructions",
|
131 |
interactive=True,
|
132 |
)
|
133 |
with gr.Column():
|
@@ -141,7 +195,7 @@ with gr.Blocks() as demo:
|
|
141 |
with gr.Column():
|
142 |
headline_prompt = gr.Textbox(
|
143 |
ai_tasks.headlines_for_images.PROMPT,
|
144 |
-
label="Instructions",
|
145 |
interactive=True,
|
146 |
lines=20,
|
147 |
)
|
@@ -152,9 +206,58 @@ with gr.Blocks() as demo:
|
|
152 |
max_lines=10,
|
153 |
interactive=False,
|
154 |
)
|
155 |
-
headline_image = gr.Image()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
vars_ = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
execute.click(
|
160 |
get_text_and_images_from_url, inputs=[url], outputs=[text, images]
|
@@ -169,11 +272,19 @@ with gr.Blocks() as demo:
|
|
169 |
).success(
|
170 |
get_headline_for_image,
|
171 |
inputs=[headline_prompt] + vars_, # type: ignore
|
172 |
-
outputs=[headline],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
).success(
|
174 |
-
|
175 |
-
inputs=[headline],
|
176 |
-
outputs=[headline_image],
|
177 |
)
|
178 |
|
179 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import ai
|
4 |
import ai_tasks
|
5 |
import code_tasks
|
6 |
import custom_code
|
|
|
32 |
return custom_code.image_analysis.analyze_images(eval(images))
|
33 |
|
34 |
|
35 |
+
def summarize_text(
|
36 |
+
prompt,
|
37 |
+
url,
|
38 |
+
dimensions,
|
39 |
+
text,
|
40 |
+
images,
|
41 |
+
image_infos,
|
42 |
+
summary,
|
43 |
+
headline,
|
44 |
+
):
|
45 |
return ai_tasks.text_summary._summarize_text(
|
46 |
prompt,
|
47 |
url=url,
|
|
|
50 |
images=images,
|
51 |
image_infos=image_infos,
|
52 |
summary=summary,
|
53 |
+
headline=headline,
|
54 |
)
|
55 |
|
56 |
|
57 |
+
def get_headline_for_image(
|
58 |
+
prompt,
|
59 |
+
url,
|
60 |
+
dimensions,
|
61 |
+
text,
|
62 |
+
images,
|
63 |
+
image_infos,
|
64 |
+
summary,
|
65 |
+
headline,
|
66 |
+
):
|
67 |
+
import json
|
68 |
+
|
69 |
+
output = ai_tasks.headlines_for_images._get_headline_for_image(
|
70 |
prompt,
|
71 |
url=url,
|
72 |
dimensions=dimensions,
|
|
|
74 |
images=images,
|
75 |
image_infos=image_infos,
|
76 |
summary=summary,
|
77 |
+
headline=headline,
|
78 |
)
|
79 |
+
return output, json.loads(output)["image_url"]
|
80 |
|
81 |
|
82 |
+
def get_headline_and_prompt(
|
83 |
+
prompt,
|
84 |
+
url,
|
85 |
+
dimensions,
|
86 |
+
text,
|
87 |
+
images,
|
88 |
+
image_infos,
|
89 |
+
summary,
|
90 |
+
headline,
|
91 |
+
):
|
92 |
import json
|
93 |
|
94 |
+
output = ai_tasks.headlines_for_ai_images._generate_headline_and_prompt(
|
95 |
+
prompt,
|
96 |
+
url=url,
|
97 |
+
dimensions=dimensions,
|
98 |
+
text=text,
|
99 |
+
images=images,
|
100 |
+
image_infos=image_infos,
|
101 |
+
summary=summary,
|
102 |
+
headline=headline,
|
103 |
+
)
|
104 |
+
output_dict = json.loads(output)
|
105 |
+
return (
|
106 |
+
output,
|
107 |
+
output_dict["ai_prompt"],
|
108 |
+
output_dict["ai_prompt"],
|
109 |
+
output_dict["dimension_to_map"],
|
110 |
+
output_dict["dimension_to_map"],
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
def generate_image(prompt, dimensions):
|
115 |
+
return ai.image.urls(prompt, 1, dimensions)[0]
|
116 |
|
117 |
|
118 |
with gr.Blocks() as demo:
|
|
|
181 |
with gr.Column():
|
182 |
summary_prompt = gr.Textbox(
|
183 |
ai_tasks.text_summary.PROMPT,
|
184 |
+
label="Instructions:",
|
185 |
interactive=True,
|
186 |
)
|
187 |
with gr.Column():
|
|
|
195 |
with gr.Column():
|
196 |
headline_prompt = gr.Textbox(
|
197 |
ai_tasks.headlines_for_images.PROMPT,
|
198 |
+
label="Instructions:",
|
199 |
interactive=True,
|
200 |
lines=20,
|
201 |
)
|
|
|
206 |
max_lines=10,
|
207 |
interactive=False,
|
208 |
)
|
209 |
+
headline_image = gr.Image(interactive=False)
|
210 |
+
|
211 |
+
with gr.Box():
|
212 |
+
gr.Markdown("AI task: generate headline and prompt for image")
|
213 |
+
with gr.Row():
|
214 |
+
with gr.Column():
|
215 |
+
ai_prompt_prompt = gr.Textbox(
|
216 |
+
ai_tasks.headlines_for_ai_images.PROMPT,
|
217 |
+
label="Instructions:",
|
218 |
+
interactive=True,
|
219 |
+
)
|
220 |
+
with gr.Column():
|
221 |
+
headline_and_prompt = gr.Textbox(
|
222 |
+
label="Output: {headline_prompt}",
|
223 |
+
lines=20,
|
224 |
+
max_lines=20,
|
225 |
+
interactive=False,
|
226 |
+
)
|
227 |
+
dimension_to_map = gr.Textbox(
|
228 |
+
label="Output: {dimension_to_map}",
|
229 |
+
interactive=False,
|
230 |
+
)
|
231 |
+
ai_prompt = gr.Textbox(
|
232 |
+
label="Output: {ai_prompt}",
|
233 |
+
interactive=False,
|
234 |
+
)
|
235 |
+
|
236 |
+
with gr.Box():
|
237 |
+
gr.Markdown("AI task: generate image")
|
238 |
+
with gr.Row():
|
239 |
+
with gr.Column():
|
240 |
+
with gr.Box():
|
241 |
+
ai_image_prompt = gr.Textbox(
|
242 |
+
label="Instructions: {ai_prompt}",
|
243 |
+
interactive=False,
|
244 |
+
)
|
245 |
+
image_dimensions = gr.Textbox(
|
246 |
+
label="Input: {dimension_to_map}",
|
247 |
+
interactive=False,
|
248 |
+
)
|
249 |
+
with gr.Column():
|
250 |
+
ai_image = gr.Image()
|
251 |
|
252 |
+
vars_ = [
|
253 |
+
url,
|
254 |
+
dimensions,
|
255 |
+
text,
|
256 |
+
images,
|
257 |
+
image_infos,
|
258 |
+
summary,
|
259 |
+
headline,
|
260 |
+
]
|
261 |
|
262 |
execute.click(
|
263 |
get_text_and_images_from_url, inputs=[url], outputs=[text, images]
|
|
|
272 |
).success(
|
273 |
get_headline_for_image,
|
274 |
inputs=[headline_prompt] + vars_, # type: ignore
|
275 |
+
outputs=[headline, headline_image],
|
276 |
+
).success(
|
277 |
+
get_headline_and_prompt,
|
278 |
+
inputs=[ai_prompt_prompt] + vars_, # type: ignore
|
279 |
+
outputs=[
|
280 |
+
headline_and_prompt,
|
281 |
+
ai_prompt,
|
282 |
+
ai_image_prompt,
|
283 |
+
dimension_to_map,
|
284 |
+
image_dimensions,
|
285 |
+
],
|
286 |
).success(
|
287 |
+
generate_image, inputs=[ai_image_prompt, image_dimensions], outputs=[ai_image]
|
|
|
|
|
288 |
)
|
289 |
|
290 |
demo.launch()
|