SauravMaheshkar
commited on
Commit
•
8260e47
1
Parent(s):
630e69b
feat: add multi-masking support
Browse files- app.py +30 -22
- src/plot_utils.py +45 -85
app.py
CHANGED
@@ -1,18 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import cv2
|
4 |
import torch
|
5 |
-
|
6 |
-
|
7 |
-
from typing import Dict, Any, List
|
8 |
-
|
9 |
-
from src.plot_utils import show_masks
|
10 |
from gradio_image_annotation import image_annotator
|
11 |
-
|
12 |
-
|
13 |
from sam2.build_sam import build_sam2
|
14 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
15 |
|
|
|
|
|
16 |
choice_mapping: Dict[str, List[str]] = {
|
17 |
"tiny": ["sam2_hiera_t.yaml", "assets/checkpoints/sam2_hiera_tiny.pt"],
|
18 |
"small": ["sam2_hiera_s.yaml", "assets/checkpoints/sam2_hiera_small.pt"],
|
@@ -27,27 +26,34 @@ def predict(model_choice, annotations: Dict[str, Any]):
|
|
27 |
sam2_model = build_sam2(config_file, ckpt_path, device=device)
|
28 |
predictor = SAM2ImagePredictor(sam2_model)
|
29 |
predictor.set_image(annotations["image"])
|
30 |
-
coordinates =
|
31 |
-
|
32 |
-
|
33 |
-
int(annotations["boxes"][
|
34 |
-
int(annotations["boxes"][
|
35 |
-
int(annotations["boxes"][
|
|
|
36 |
]
|
37 |
-
|
|
|
38 |
masks, scores, _ = predictor.predict(
|
39 |
point_coords=None,
|
40 |
point_labels=None,
|
41 |
-
box=coordinates
|
42 |
multimask_output=False,
|
43 |
)
|
44 |
-
mask
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
return [
|
49 |
-
|
50 |
-
gr.DownloadButton("Download Mask", value="
|
51 |
]
|
52 |
|
53 |
|
@@ -77,7 +83,9 @@ with gr.Blocks(delete_cache=(30, 30)) as demo:
|
|
77 |
label="Draw a bounding box",
|
78 |
)
|
79 |
btn = gr.Button("Get Segmentation Mask")
|
80 |
-
download_btn = gr.DownloadButton(
|
|
|
|
|
81 |
btn.click(fn=predict, inputs=[model, annotator], outputs=[gr.Plot(), download_btn])
|
82 |
|
83 |
demo.launch()
|
|
|
1 |
+
import pathlib
|
2 |
+
import zipfile
|
3 |
+
from typing import Any, Dict, List
|
4 |
+
|
5 |
+
import cv2
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
|
|
8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
9 |
from gradio_image_annotation import image_annotator
|
|
|
|
|
10 |
from sam2.build_sam import build_sam2
|
11 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
12 |
|
13 |
+
from src.plot_utils import render_masks
|
14 |
+
|
15 |
choice_mapping: Dict[str, List[str]] = {
|
16 |
"tiny": ["sam2_hiera_t.yaml", "assets/checkpoints/sam2_hiera_tiny.pt"],
|
17 |
"small": ["sam2_hiera_s.yaml", "assets/checkpoints/sam2_hiera_small.pt"],
|
|
|
26 |
sam2_model = build_sam2(config_file, ckpt_path, device=device)
|
27 |
predictor = SAM2ImagePredictor(sam2_model)
|
28 |
predictor.set_image(annotations["image"])
|
29 |
+
coordinates = []
|
30 |
+
for i in range(len(annotations["boxes"])):
|
31 |
+
coordinate = [
|
32 |
+
int(annotations["boxes"][i]["xmin"]),
|
33 |
+
int(annotations["boxes"][i]["ymin"]),
|
34 |
+
int(annotations["boxes"][i]["xmax"]),
|
35 |
+
int(annotations["boxes"][i]["ymax"]),
|
36 |
]
|
37 |
+
coordinates.append(coordinate)
|
38 |
+
|
39 |
masks, scores, _ = predictor.predict(
|
40 |
point_coords=None,
|
41 |
point_labels=None,
|
42 |
+
box=np.array(coordinates),
|
43 |
multimask_output=False,
|
44 |
)
|
45 |
+
for count, mask in enumerate(masks):
|
46 |
+
mask = mask.transpose(1, 2, 0) # type:ignore
|
47 |
+
mask_image = (mask * 255).astype(np.uint8) # Convert to uint8 format
|
48 |
+
cv2.imwrite(f"assets/mask_{count}.png", mask_image)
|
49 |
+
mask_dir = pathlib.Path("assets/")
|
50 |
+
with zipfile.ZipFile("assets/masks.zip", "w") as archive:
|
51 |
+
for mask_file in mask_dir.glob("mask_*.png"):
|
52 |
+
archive.write(mask_file, arcname=mask_file.relative_to(mask_dir))
|
53 |
|
54 |
return [
|
55 |
+
render_masks(annotations["image"], masks),
|
56 |
+
gr.DownloadButton("Download Mask", value="assets/masks.zip", visible=True),
|
57 |
]
|
58 |
|
59 |
|
|
|
83 |
label="Draw a bounding box",
|
84 |
)
|
85 |
btn = gr.Button("Get Segmentation Mask")
|
86 |
+
download_btn = gr.DownloadButton(
|
87 |
+
"Download Mask", value="assets/masks.zip", visible=False
|
88 |
+
)
|
89 |
btn.click(fn=predict, inputs=[model, annotator], outputs=[gr.Plot(), download_btn])
|
90 |
|
91 |
demo.launch()
|
src/plot_utils.py
CHANGED
@@ -1,90 +1,50 @@
|
|
1 |
-
|
2 |
-
import matplotlib.pyplot as plt
|
3 |
-
|
4 |
-
|
5 |
-
def show_mask(mask, ax, random_color=False, borders=True):
|
6 |
-
if random_color:
|
7 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
8 |
-
else:
|
9 |
-
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
10 |
-
h, w = mask.shape[-2:]
|
11 |
-
mask = mask.astype(np.uint8)
|
12 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
13 |
-
if borders:
|
14 |
-
import cv2
|
15 |
-
|
16 |
-
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
17 |
-
# Try to smooth contours
|
18 |
-
contours = [
|
19 |
-
cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours
|
20 |
-
]
|
21 |
-
mask_image = cv2.drawContours(
|
22 |
-
mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2
|
23 |
-
)
|
24 |
-
ax.imshow(mask_image)
|
25 |
-
|
26 |
-
|
27 |
-
def show_points(coords, labels, ax, marker_size=375):
|
28 |
-
pos_points = coords[labels == 1]
|
29 |
-
neg_points = coords[labels == 0]
|
30 |
-
ax.scatter(
|
31 |
-
pos_points[:, 0],
|
32 |
-
pos_points[:, 1],
|
33 |
-
color="green",
|
34 |
-
marker="*",
|
35 |
-
s=marker_size,
|
36 |
-
edgecolor="white",
|
37 |
-
linewidth=1.25,
|
38 |
-
)
|
39 |
-
ax.scatter(
|
40 |
-
neg_points[:, 0],
|
41 |
-
neg_points[:, 1],
|
42 |
-
color="red",
|
43 |
-
marker="*",
|
44 |
-
s=marker_size,
|
45 |
-
edgecolor="white",
|
46 |
-
linewidth=1.25,
|
47 |
-
)
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
ax.add_patch(
|
54 |
-
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
|
55 |
-
)
|
56 |
|
57 |
|
58 |
-
def
|
59 |
image,
|
60 |
masks,
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
from matplotlib.pyplot import Figure
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
+
def render_masks(
|
9 |
image,
|
10 |
masks,
|
11 |
+
random_color: Optional[bool] = True,
|
12 |
+
smoothen_contours: Optional[bool] = True,
|
13 |
+
) -> "Figure":
|
14 |
+
h, w = image.shape[:2]
|
15 |
+
fig, ax = plt.subplots(figsize=(w / 100, h / 100), dpi=100)
|
16 |
+
ax.axis("off")
|
17 |
+
ax.imshow(image)
|
18 |
+
|
19 |
+
for mask in masks:
|
20 |
+
if random_color:
|
21 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
22 |
+
else:
|
23 |
+
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
24 |
+
|
25 |
+
mask = mask.astype(np.uint8)
|
26 |
+
mask = mask.reshape(h, w)
|
27 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
28 |
+
|
29 |
+
if smoothen_contours:
|
30 |
+
import cv2
|
31 |
+
|
32 |
+
contours, _ = cv2.findContours(
|
33 |
+
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
34 |
+
)
|
35 |
+
contours = [
|
36 |
+
cv2.approxPolyDP(contour, epsilon=0.01, closed=True)
|
37 |
+
for contour in contours
|
38 |
+
]
|
39 |
+
mask_image = cv2.drawContours(
|
40 |
+
mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2
|
41 |
+
)
|
42 |
+
|
43 |
+
ax.imshow(mask_image, alpha=0.6)
|
44 |
+
|
45 |
+
# Make image occupy the whole figure
|
46 |
+
ax.set_xlim(0, w)
|
47 |
+
ax.set_ylim(h, 0)
|
48 |
+
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
49 |
+
|
50 |
+
return fig
|