import numpy as np import matplotlib.pyplot as plt def show_mask(mask, ax, random_color=False, borders=True): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) h, w = mask.shape[-2:] mask = mask.astype(np.uint8) mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) if borders: import cv2 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Try to smooth contours contours = [ cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours ] mask_image = cv2.drawContours( mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2 ) ax.imshow(mask_image) def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels == 1] neg_points = coords[labels == 0] ax.scatter( pos_points[:, 0], pos_points[:, 1], color="green", marker="*", s=marker_size, edgecolor="white", linewidth=1.25, ) ax.scatter( neg_points[:, 0], neg_points[:, 1], color="red", marker="*", s=marker_size, edgecolor="white", linewidth=1.25, ) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch( plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2) ) def show_masks( image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True, ): num_masks = len(masks) num_cols = num_masks # Number of columns is equal to the number of masks fig, axes = plt.subplots(1, num_cols, figsize=(5 * num_cols, 5)) if num_masks == 1: axes = [axes] # Ensure axes is iterable when there's only one mask for i, (mask, score) in enumerate(zip(masks, scores)): ax = axes[i] ax.imshow(image) show_mask(mask, ax, borders=borders) if point_coords is not None: assert input_labels is not None show_points(point_coords, input_labels, ax) if box_coords is not None: show_box(box_coords, ax) if len(scores) > 1: ax.set_title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18) ax.axis("off") plt.tight_layout() return plt