Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,615 Bytes
349b5c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
import numpy as np
import pypdfium2 as pdfium
import torch
import tqdm
from model import encode_images, encode_queries
from PIL import Image
from sqlitedict import SqliteDict
from voyager import Index, Space
def iter_batch(
X: list[str], batch_size: int, tqdm_bar: bool = True, desc: str = ""
) -> list:
"""Iterate over a list of elements by batch."""
batchs = [X[pos : pos + batch_size] for pos in range(0, len(X), batch_size)]
if tqdm_bar:
for batch in tqdm.tqdm(
iterable=batchs,
position=0,
total=1 + len(X) // batch_size,
desc=desc,
):
yield batch
else:
yield from batchs
class Voyager:
"""Voyager index. The Voyager index is a fast and efficient index for approximate nearest neighbor search.
Parameters
----------
name
The name of the collection.
override
Whether to override the collection if it already exists.
embedding_size
The number of dimensions of the embeddings.
M
The number of subquantizers.
ef_construction
The number of candidates to evaluate during the construction of the index.
ef_search
The number of candidates to evaluate during the search.
"""
def __init__(
self,
index_folder: str = "indexes",
index_name: str = "base_collection",
override: bool = False,
embedding_size: int = 128,
M: int = 64,
ef_construction: int = 200,
ef_search: int = 200,
) -> None:
self.ef_search = ef_search
if not os.path.exists(path=index_folder):
os.makedirs(name=index_folder)
self.index_path = os.path.join(index_folder, f"{index_name}.voyager")
self.page_ids_to_data_path = os.path.join(
index_folder, f"{index_name}_page_ids_to_data.sqlite"
)
self.index = self._create_collection(
index_path=self.index_path,
embedding_size=embedding_size,
M=M,
ef_constructions=ef_construction,
override=override,
)
def _load_page_ids_to_data(self) -> SqliteDict:
"""Load the SQLite database that maps document IDs to images."""
return SqliteDict(self.page_ids_to_data_path, outer_stack=False)
def _create_collection(
self,
index_path: str,
embedding_size: int,
M: int,
ef_constructions: int,
override: bool,
) -> None:
"""Create a new Voyager collection.
Parameters
----------
index_path
The path to the index.
embedding_size
The size of the embeddings.
M
The number of subquantizers.
ef_constructions
The number of candidates to evaluate during the construction of the index.
override
Whether to override the collection if it already exists.
"""
if os.path.exists(path=index_path) and not override:
return Index.load(index_path)
if os.path.exists(path=index_path):
os.remove(index_path)
# Create the Voyager index
index = Index(
Space.Cosine,
num_dimensions=embedding_size,
M=M,
ef_construction=ef_constructions,
)
index.save(index_path)
if override and os.path.exists(path=self.page_ids_to_data_path):
os.remove(path=self.page_ids_to_data_path)
# Create the SQLite databases
page_ids_to_data = self._load_page_ids_to_data()
page_ids_to_data.close()
return index
def add_documents(
self,
paths: str | list[str],
batch_size: int = 1,
) -> None:
"""Add documents to the index. Note that batch_size means the number of pages to encode at once, not documents."""
if isinstance(paths, str):
paths = [paths]
page_ids_to_data = self._load_page_ids_to_data()
images = []
num_pages = []
for path in paths:
if path.lower().endswith(".pdf"):
pdf = pdfium.PdfDocument(path)
n_pages = len(pdf)
num_pages.append(n_pages)
for page_number in range(n_pages):
page = pdf.get_page(page_number)
pil_image = page.render(
scale=1,
rotation=0,
)
pil_image = pil_image.to_pil()
images.append(pil_image)
pdf.close()
else:
pil_image = Image.open(path)
images.append(pil_image)
num_pages.append(1)
embeddings = []
for batch in iter_batch(
X=images, batch_size=batch_size, desc=f"Encoding pages (bs={batch_size})"
):
embeddings.extend(encode_images(batch))
embeddings_ids = self.index.add_items(embeddings)
current_index = 0
for i, path in enumerate(paths):
for page_number in range(num_pages[i]):
page_ids_to_data[embeddings_ids[current_index]] = {
"path": path,
"image": images[current_index],
"page_number": page_number,
}
current_index += 1
page_ids_to_data.commit()
self.index.save(self.index_path)
return self
def __call__(
self,
queries: np.ndarray | torch.Tensor,
k: int = 10,
) -> dict:
"""Query the index for the nearest neighbors of the queries embeddings.
Parameters
----------
queries_embeddings
The queries embeddings.
k
The number of nearest neighbors to return.
"""
queries_embeddings = encode_queries(queries)
page_ids_to_data = self._load_page_ids_to_data()
k = min(k, len(page_ids_to_data))
n_queries = len(queries_embeddings)
indices, distances = self.index.query(
queries_embeddings, k, query_ef=self.ef_search
)
if len(indices) == 0:
raise ValueError("Index is empty, add documents before querying.")
documents = [
[page_ids_to_data[str(indice)] for indice in query_indices]
for query_indices in indices
]
page_ids_to_data.close()
return {
"documents": documents,
"distances": distances.reshape(n_queries, -1, k),
}
|