File size: 4,077 Bytes
8c92a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
from asteroid_filterbanks import Encoder, ParamSincFB
from .RawNetBasicBlock import Bottle2neck, PreEmphasis
class RawNet3(nn.Module):
def __init__(self, block, model_scale, context, summed, C=1024, **kwargs):
super().__init__()
nOut = kwargs["nOut"]
self.context = context
self.encoder_type = kwargs["encoder_type"]
self.log_sinc = kwargs["log_sinc"]
self.norm_sinc = kwargs["norm_sinc"]
self.out_bn = kwargs["out_bn"]
self.summed = summed
self.preprocess = nn.Sequential(
PreEmphasis(), nn.InstanceNorm1d(1, eps=1e-4, affine=True)
)
self.conv1 = Encoder(
ParamSincFB(
C // 4,
251,
stride=kwargs["sinc_stride"],
)
)
self.relu = nn.ReLU()
self.bn1 = nn.BatchNorm1d(C // 4)
self.layer1 = block(
C // 4, C, kernel_size=3, dilation=2, scale=model_scale, pool=5
)
self.layer2 = block(C, C, kernel_size=3, dilation=3, scale=model_scale, pool=3)
self.layer3 = block(C, C, kernel_size=3, dilation=4, scale=model_scale)
self.layer4 = nn.Conv1d(3 * C, 1536, kernel_size=1)
if self.context:
attn_input = 1536 * 3
else:
attn_input = 1536
print("self.encoder_type", self.encoder_type)
if self.encoder_type == "ECA":
attn_output = 1536
elif self.encoder_type == "ASP":
attn_output = 1
else:
raise ValueError("Undefined encoder")
self.attention = nn.Sequential(
nn.Conv1d(attn_input, 128, kernel_size=1),
nn.ReLU(),
nn.BatchNorm1d(128),
nn.Conv1d(128, attn_output, kernel_size=1),
nn.Softmax(dim=2),
)
self.bn5 = nn.BatchNorm1d(3072)
self.fc6 = nn.Linear(3072, nOut)
self.bn6 = nn.BatchNorm1d(nOut)
self.mp3 = nn.MaxPool1d(3)
def forward(self, x):
"""
:param x: input mini-batch (bs, samp)
"""
with torch.cuda.amp.autocast(enabled=False):
x = self.preprocess(x)
x = torch.abs(self.conv1(x))
if self.log_sinc:
x = torch.log(x + 1e-6)
if self.norm_sinc == "mean":
x = x - torch.mean(x, dim=-1, keepdim=True)
elif self.norm_sinc == "mean_std":
m = torch.mean(x, dim=-1, keepdim=True)
s = torch.std(x, dim=-1, keepdim=True)
s[s < 0.001] = 0.001
x = (x - m) / s
if self.summed:
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(self.mp3(x1) + x2)
else:
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x = self.layer4(torch.cat((self.mp3(x1), x2, x3), dim=1))
x = self.relu(x)
t = x.size()[-1]
if self.context:
global_x = torch.cat(
(
x,
torch.mean(x, dim=2, keepdim=True).repeat(1, 1, t),
torch.sqrt(
torch.var(x, dim=2, keepdim=True).clamp(min=1e-4, max=1e4)
).repeat(1, 1, t),
),
dim=1,
)
else:
global_x = x
w = self.attention(global_x)
mu = torch.sum(x * w, dim=2)
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-4, max=1e4))
x = torch.cat((mu, sg), 1)
x = self.bn5(x)
x = self.fc6(x)
if self.out_bn:
x = self.bn6(x)
return x
def MainModel(**kwargs):
model = RawNet3(Bottle2neck, model_scale=8, context=True, summed=True, **kwargs)
return model
|