File size: 13,663 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm
from models.codec.amphion_codec.quantize import (
ResidualVQ,
VectorQuantize,
FactorizedVectorQuantize,
LookupFreeQuantize,
)
from models.codec.amphion_codec.vocos import Vocos
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
# Scripting this brings model speed up 1.4x
@torch.jit.script
def snake(x, alpha):
shape = x.shape
x = x.reshape(shape[0], shape[1], -1)
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
x = x.reshape(shape)
return x
class Snake1d(nn.Module):
def __init__(self, channels):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
def forward(self, x):
return snake(x, self.alpha)
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
y = self.block(x)
pad = (x.shape[-1] - y.shape[-1]) // 2
if pad > 0:
x = x[..., pad:-pad]
return x + y
class EncoderBlock(nn.Module):
def __init__(self, dim: int = 16, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
ResidualUnit(dim // 2, dilation=1),
ResidualUnit(dim // 2, dilation=3),
ResidualUnit(dim // 2, dilation=9),
Snake1d(dim // 2),
WNConv1d(
dim // 2,
dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
),
)
def forward(self, x):
return self.block(x)
class CodecEncoder(nn.Module):
def __init__(
self,
d_model: int = 64,
up_ratios: list = [4, 5, 5, 6],
out_channels: int = 256,
use_tanh: bool = False,
cfg=None,
):
super().__init__()
d_model = cfg.d_model if cfg is not None else d_model
up_ratios = cfg.up_ratios if cfg is not None else up_ratios
out_channels = cfg.out_channels if cfg is not None else out_channels
use_tanh = cfg.use_tanh if cfg is not None else use_tanh
# Create first convolution
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride in up_ratios:
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride)]
# Create last convolution
self.block += [
Snake1d(d_model),
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
]
if use_tanh:
self.block += [nn.Tanh()]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
self.reset_parameters()
def forward(self, x):
return self.block(x)
def reset_parameters(self):
self.apply(init_weights)
class DecoderBlock(nn.Module):
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
Snake1d(input_dim),
WNConvTranspose1d(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
output_padding=stride % 2,
),
ResidualUnit(output_dim, dilation=1),
ResidualUnit(output_dim, dilation=3),
ResidualUnit(output_dim, dilation=9),
)
def forward(self, x):
return self.block(x)
class CodecDecoder(nn.Module):
def __init__(
self,
in_channels: int = 256,
upsample_initial_channel: int = 1536,
up_ratios: list = [5, 5, 4, 2],
num_quantizers: int = 8,
codebook_size: int = 1024,
codebook_dim: int = 256,
quantizer_type: str = "vq",
quantizer_dropout: float = 0.5,
commitment: float = 0.25,
codebook_loss_weight: float = 1.0,
use_l2_normlize: bool = False,
codebook_type: str = "euclidean",
kmeans_init: bool = False,
kmeans_iters: int = 10,
decay: float = 0.8,
eps: float = 1e-5,
threshold_ema_dead_code: int = 2,
weight_init: bool = False,
use_vocos: bool = False,
vocos_dim: int = 384,
vocos_intermediate_dim: int = 1152,
vocos_num_layers: int = 8,
n_fft: int = 800,
hop_size: int = 200,
padding: str = "same",
cfg=None,
):
super().__init__()
in_channels = (
cfg.in_channels
if cfg is not None and hasattr(cfg, "in_channels")
else in_channels
)
upsample_initial_channel = (
cfg.upsample_initial_channel
if cfg is not None and hasattr(cfg, "upsample_initial_channel")
else upsample_initial_channel
)
up_ratios = (
cfg.up_ratios
if cfg is not None and hasattr(cfg, "up_ratios")
else up_ratios
)
num_quantizers = (
cfg.num_quantizers
if cfg is not None and hasattr(cfg, "num_quantizers")
else num_quantizers
)
codebook_size = (
cfg.codebook_size
if cfg is not None and hasattr(cfg, "codebook_size")
else codebook_size
)
codebook_dim = (
cfg.codebook_dim
if cfg is not None and hasattr(cfg, "codebook_dim")
else codebook_dim
)
quantizer_type = (
cfg.quantizer_type
if cfg is not None and hasattr(cfg, "quantizer_type")
else quantizer_type
)
quantizer_dropout = (
cfg.quantizer_dropout
if cfg is not None and hasattr(cfg, "quantizer_dropout")
else quantizer_dropout
)
commitment = (
cfg.commitment
if cfg is not None and hasattr(cfg, "commitment")
else commitment
)
codebook_loss_weight = (
cfg.codebook_loss_weight
if cfg is not None and hasattr(cfg, "codebook_loss_weight")
else codebook_loss_weight
)
use_l2_normlize = (
cfg.use_l2_normlize
if cfg is not None and hasattr(cfg, "use_l2_normlize")
else use_l2_normlize
)
codebook_type = (
cfg.codebook_type
if cfg is not None and hasattr(cfg, "codebook_type")
else codebook_type
)
kmeans_init = (
cfg.kmeans_init
if cfg is not None and hasattr(cfg, "kmeans_init")
else kmeans_init
)
kmeans_iters = (
cfg.kmeans_iters
if cfg is not None and hasattr(cfg, "kmeans_iters")
else kmeans_iters
)
decay = cfg.decay if cfg is not None and hasattr(cfg, "decay") else decay
eps = cfg.eps if cfg is not None and hasattr(cfg, "eps") else eps
threshold_ema_dead_code = (
cfg.threshold_ema_dead_code
if cfg is not None and hasattr(cfg, "threshold_ema_dead_code")
else threshold_ema_dead_code
)
weight_init = (
cfg.weight_init
if cfg is not None and hasattr(cfg, "weight_init")
else weight_init
)
use_vocos = (
cfg.use_vocos
if cfg is not None and hasattr(cfg, "use_vocos")
else use_vocos
)
vocos_dim = (
cfg.vocos_dim
if cfg is not None and hasattr(cfg, "vocos_dim")
else vocos_dim
)
vocos_intermediate_dim = (
cfg.vocos_intermediate_dim
if cfg is not None and hasattr(cfg, "vocos_intermediate_dim")
else vocos_intermediate_dim
)
vocos_num_layers = (
cfg.vocos_num_layers
if cfg is not None and hasattr(cfg, "vocos_num_layers")
else vocos_num_layers
)
n_fft = cfg.n_fft if cfg is not None and hasattr(cfg, "n_fft") else n_fft
hop_size = (
cfg.hop_size if cfg is not None and hasattr(cfg, "hop_size") else hop_size
)
padding = (
cfg.padding if cfg is not None and hasattr(cfg, "padding") else padding
)
if quantizer_type == "vq":
self.quantizer = ResidualVQ(
input_dim=in_channels,
num_quantizers=num_quantizers,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_type=quantizer_type,
quantizer_dropout=quantizer_dropout,
commitment=commitment,
codebook_loss_weight=codebook_loss_weight,
use_l2_normlize=use_l2_normlize,
codebook_type=codebook_type,
kmeans_init=kmeans_init,
kmeans_iters=kmeans_iters,
decay=decay,
eps=eps,
threshold_ema_dead_code=threshold_ema_dead_code,
weight_init=weight_init,
)
elif quantizer_type == "fvq":
self.quantizer = ResidualVQ(
input_dim=in_channels,
num_quantizers=num_quantizers,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_type=quantizer_type,
quantizer_dropout=quantizer_dropout,
commitment=commitment,
codebook_loss_weight=codebook_loss_weight,
use_l2_normlize=use_l2_normlize,
)
elif quantizer_type == "lfq":
self.quantizer = ResidualVQ(
input_dim=in_channels,
num_quantizers=num_quantizers,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_type=quantizer_type,
)
else:
raise ValueError(f"Unknown quantizer type {quantizer_type}")
if not use_vocos:
# Add first conv layer
channels = upsample_initial_channel
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
# Add upsampling + MRF blocks
for i, stride in enumerate(up_ratios):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, stride)]
# Add final conv layer
layers += [
Snake1d(output_dim),
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
if use_vocos:
self.model = Vocos(
input_channels=in_channels,
dim=vocos_dim,
intermediate_dim=vocos_intermediate_dim,
num_layers=vocos_num_layers,
adanorm_num_embeddings=None,
n_fft=n_fft,
hop_size=hop_size,
padding=padding,
)
self.reset_parameters()
def forward(self, x=None, vq=False, eval_vq=False, n_quantizers=None):
"""
if vq is True, x = encoder output, then return quantized output;
else, x = quantized output, then return decoder output
"""
if vq is True:
if eval_vq:
self.quantizer.eval()
(
quantized_out,
all_indices,
all_commit_losses,
all_codebook_losses,
all_quantized,
) = self.quantizer(x, n_quantizers=n_quantizers)
return (
quantized_out,
all_indices,
all_commit_losses,
all_codebook_losses,
all_quantized,
)
return self.model(x)
def quantize(self, x, n_quantizers=None):
self.quantizer.eval()
quantized_out, vq, _, _, _ = self.quantizer(x, n_quantizers=n_quantizers)
return quantized_out, vq
# TODO: check consistency of vq2emb and quantize
def vq2emb(self, vq, n_quantizers=None):
return self.quantizer.vq2emb(vq, n_quantizers=n_quantizers)
def decode(self, x):
return self.model(x)
def latent2dist(self, x, n_quantizers=None):
return self.quantizer.latent2dist(x, n_quantizers=n_quantizers)
def reset_parameters(self):
self.apply(init_weights)
|