File size: 31,452 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Optional, Tuple

import numpy as np
import scipy
import torch
from torch import nn, view_as_real, view_as_complex
from torch import nn
from torch.nn.utils import weight_norm, remove_weight_norm
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
import librosa


def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
    """
    Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.

    Args:
        x (Tensor): Input tensor.
        clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.

    Returns:
        Tensor: Element-wise logarithm of the input tensor with clipping applied.
    """
    return torch.log(torch.clip(x, min=clip_val))


def symlog(x: torch.Tensor) -> torch.Tensor:
    return torch.sign(x) * torch.log1p(x.abs())


def symexp(x: torch.Tensor) -> torch.Tensor:
    return torch.sign(x) * (torch.exp(x.abs()) - 1)


class STFT(nn.Module):
    def __init__(
        self,
        n_fft: int,
        hop_length: int,
        win_length: int,
        center=True,
    ):
        super().__init__()
        self.center = center
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        window = torch.hann_window(win_length)
        self.register_buffer("window", window)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (B, T * hop_length)

        if not self.center:
            pad = self.win_length - self.hop_length
            x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect")

        stft_spec = torch.stft(
            x,
            self.n_fft,
            hop_length=self.hop_length,
            win_length=self.win_length,
            window=self.window,
            center=self.center,
            return_complex=False,
        )  # (B, n_fft // 2 + 1, T, 2)

        rea = stft_spec[:, :, :, 0]  # (B, n_fft // 2 + 1, T, 2)
        imag = stft_spec[:, :, :, 1]  # (B, n_fft // 2 + 1, T, 2)

        log_mag = torch.log(
            torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5
        )  # (B, n_fft // 2 + 1, T)
        phase = torch.atan2(imag, rea)  # (B, n_fft // 2 + 1, T)

        return log_mag, phase


class ISTFT(nn.Module):
    """
    Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
    windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
    See issue: https://github.com/pytorch/pytorch/issues/62323
    Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
    The NOLA constraint is met as we trim padded samples anyway.

    Args:
        n_fft (int): Size of Fourier transform.
        hop_length (int): The distance between neighboring sliding window frames.
        win_length (int): The size of window frame and STFT filter.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(
        self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"
    ):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        window = torch.hann_window(win_length)
        self.register_buffer("window", window)

    def forward(self, spec: torch.Tensor) -> torch.Tensor:
        """
        Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.

        Args:
            spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
                            N is the number of frequency bins, and T is the number of time frames.

        Returns:
            Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
        """
        if self.padding == "center":
            # Fallback to pytorch native implementation
            return torch.istft(
                spec,
                self.n_fft,
                self.hop_length,
                self.win_length,
                self.window,
                center=True,
            )
        elif self.padding == "same":
            pad = (self.win_length - self.hop_length) // 2
        else:
            raise ValueError("Padding must be 'center' or 'same'.")

        assert spec.dim() == 3, "Expected a 3D tensor as input"
        B, N, T = spec.shape

        # Inverse FFT
        ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
        ifft = ifft * self.window[None, :, None]

        # Overlap and Add
        output_size = (T - 1) * self.hop_length + self.win_length
        y = torch.nn.functional.fold(
            ifft,
            output_size=(1, output_size),
            kernel_size=(1, self.win_length),
            stride=(1, self.hop_length),
        )[:, 0, 0, pad:-pad]

        # Window envelope
        window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
        window_envelope = torch.nn.functional.fold(
            window_sq,
            output_size=(1, output_size),
            kernel_size=(1, self.win_length),
            stride=(1, self.hop_length),
        ).squeeze()[pad:-pad]

        # Normalize
        assert (window_envelope > 1e-11).all()
        y = y / window_envelope

        return y


class MDCT(nn.Module):
    """
    Modified Discrete Cosine Transform (MDCT) module.

    Args:
        frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(self, frame_len: int, padding: str = "same"):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.frame_len = frame_len
        N = frame_len // 2
        n0 = (N + 1) / 2
        window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
        self.register_buffer("window", window)

        pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len)
        post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N)
        # view_as_real: NCCL Backend does not support ComplexFloat data type
        # https://github.com/pytorch/pytorch/issues/71613
        self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
        self.register_buffer("post_twiddle", view_as_real(post_twiddle))

    def forward(self, audio: torch.Tensor) -> torch.Tensor:
        """
        Apply the Modified Discrete Cosine Transform (MDCT) to the input audio.

        Args:
            audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size
                and T is the length of the audio.

        Returns:
            Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames
                and N is the number of frequency bins.
        """
        if self.padding == "center":
            audio = torch.nn.functional.pad(
                audio, (self.frame_len // 2, self.frame_len // 2)
            )
        elif self.padding == "same":
            # hop_length is 1/2 frame_len
            audio = torch.nn.functional.pad(
                audio, (self.frame_len // 4, self.frame_len // 4)
            )
        else:
            raise ValueError("Padding must be 'center' or 'same'.")

        x = audio.unfold(-1, self.frame_len, self.frame_len // 2)
        N = self.frame_len // 2
        x = x * self.window.expand(x.shape)
        X = torch.fft.fft(
            x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1
        )[..., :N]
        res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N)
        return torch.real(res) * np.sqrt(2)


class IMDCT(nn.Module):
    """
    Inverse Modified Discrete Cosine Transform (IMDCT) module.

    Args:
        frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(self, frame_len: int, padding: str = "same"):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.frame_len = frame_len
        N = frame_len // 2
        n0 = (N + 1) / 2
        window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
        self.register_buffer("window", window)

        pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
        post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
        self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
        self.register_buffer("post_twiddle", view_as_real(post_twiddle))

    def forward(self, X: torch.Tensor) -> torch.Tensor:
        """
        Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.

        Args:
            X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size,
                L is the number of frames, and N is the number of frequency bins.

        Returns:
            Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
        """
        B, L, N = X.shape
        Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
        Y[..., :N] = X
        Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
        y = torch.fft.ifft(
            Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1
        )
        y = (
            torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape))
            * np.sqrt(N)
            * np.sqrt(2)
        )
        result = y * self.window.expand(y.shape)
        output_size = (1, (L + 1) * N)
        audio = torch.nn.functional.fold(
            result.transpose(1, 2),
            output_size=output_size,
            kernel_size=(1, self.frame_len),
            stride=(1, self.frame_len // 2),
        )[:, 0, 0, :]

        if self.padding == "center":
            pad = self.frame_len // 2
        elif self.padding == "same":
            pad = self.frame_len // 4
        else:
            raise ValueError("Padding must be 'center' or 'same'.")

        audio = audio[:, pad:-pad]
        return audio


class FourierHead(nn.Module):
    """Base class for inverse fourier modules."""

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        raise NotImplementedError("Subclasses must implement the forward method.")


class ISTFTHead(FourierHead):
    """
    ISTFT Head module for predicting STFT complex coefficients.

    Args:
        dim (int): Hidden dimension of the model.
        n_fft (int): Size of Fourier transform.
        hop_length (int): The distance between neighboring sliding window frames, which should align with
                          the resolution of the input features.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
    """

    def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
        super().__init__()
        out_dim = n_fft + 2
        self.out = torch.nn.Linear(dim, out_dim)
        self.istft = ISTFT(
            n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the ISTFTHead module.

        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        x = self.out(x).transpose(1, 2)
        mag, p = x.chunk(2, dim=1)
        mag = torch.exp(mag)
        mag = torch.clip(
            mag, max=1e2
        )  # safeguard to prevent excessively large magnitudes
        # wrapping happens here. These two lines produce real and imaginary value
        x = torch.cos(p)
        y = torch.sin(p)
        # recalculating phase here does not produce anything new
        # only costs time
        # phase = torch.atan2(y, x)
        # S = mag * torch.exp(phase * 1j)
        # better directly produce the complex value
        S = mag * (x + 1j * y)
        audio = self.istft(S)
        return audio


class IMDCTSymExpHead(FourierHead):
    """
    IMDCT Head module for predicting MDCT coefficients with symmetric exponential function

    Args:
        dim (int): Hidden dimension of the model.
        mdct_frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
        sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
                                     based on perceptual scaling. Defaults to None.
        clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
    """

    def __init__(
        self,
        dim: int,
        mdct_frame_len: int,
        padding: str = "same",
        sample_rate: Optional[int] = None,
        clip_audio: bool = False,
    ):
        super().__init__()
        out_dim = mdct_frame_len // 2
        self.out = nn.Linear(dim, out_dim)
        self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
        self.clip_audio = clip_audio

        if sample_rate is not None:
            # optionally init the last layer following mel-scale
            m_max = _hz_to_mel(sample_rate // 2)
            m_pts = torch.linspace(0, m_max, out_dim)
            f_pts = _mel_to_hz(m_pts)
            scale = 1 - (f_pts / f_pts.max())

            with torch.no_grad():
                self.out.weight.mul_(scale.view(-1, 1))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the IMDCTSymExpHead module.

        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        x = self.out(x)
        x = symexp(x)
        x = torch.clip(
            x, min=-1e2, max=1e2
        )  # safeguard to prevent excessively large magnitudes
        audio = self.imdct(x)
        if self.clip_audio:
            audio = torch.clip(x, min=-1.0, max=1.0)

        return audio


class IMDCTCosHead(FourierHead):
    """
    IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p)

    Args:
        dim (int): Hidden dimension of the model.
        mdct_frame_len (int): Length of the MDCT frame.
        padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
        clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
    """

    def __init__(
        self,
        dim: int,
        mdct_frame_len: int,
        padding: str = "same",
        clip_audio: bool = False,
    ):
        super().__init__()
        self.clip_audio = clip_audio
        self.out = nn.Linear(dim, mdct_frame_len)
        self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the IMDCTCosHead module.

        Args:
            x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
                        L is the sequence length, and H denotes the model dimension.

        Returns:
            Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
        """
        x = self.out(x)
        m, p = x.chunk(2, dim=2)
        m = torch.exp(m).clip(
            max=1e2
        )  # safeguard to prevent excessively large magnitudes
        audio = self.imdct(m * torch.cos(p))
        if self.clip_audio:
            audio = torch.clip(x, min=-1.0, max=1.0)
        return audio


class ConvNeXtBlock(nn.Module):
    """ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.

    Args:
        dim (int): Number of input channels.
        intermediate_dim (int): Dimensionality of the intermediate layer.
        layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
            Defaults to None.
        adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
            None means non-conditional LayerNorm. Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        intermediate_dim: int,
        layer_scale_init_value: float,
        adanorm_num_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.dwconv = nn.Conv1d(
            dim, dim, kernel_size=7, padding=3, groups=dim
        )  # depthwise conv
        self.adanorm = adanorm_num_embeddings is not None
        if adanorm_num_embeddings:
            self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
        else:
            self.norm = nn.LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, intermediate_dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(intermediate_dim, dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )

    def forward(
        self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        residual = x
        x = self.dwconv(x)
        x = x.transpose(1, 2)  # (B, C, T) -> (B, T, C)
        if self.adanorm:
            assert cond_embedding_id is not None
            x = self.norm(x, cond_embedding_id)
        else:
            x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.transpose(1, 2)  # (B, T, C) -> (B, C, T)

        x = residual + x
        return x


class AdaLayerNorm(nn.Module):
    """
    Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes

    Args:
        num_embeddings (int): Number of embeddings.
        embedding_dim (int): Dimension of the embeddings.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.dim = embedding_dim
        self.scale = nn.Embedding(
            num_embeddings=num_embeddings, embedding_dim=embedding_dim
        )
        self.shift = nn.Embedding(
            num_embeddings=num_embeddings, embedding_dim=embedding_dim
        )
        torch.nn.init.ones_(self.scale.weight)
        torch.nn.init.zeros_(self.shift.weight)

    def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
        scale = self.scale(cond_embedding_id)
        shift = self.shift(cond_embedding_id)
        x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
        x = x * scale + shift
        return x


class ResBlock1(nn.Module):
    """
    ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
    but without upsampling layers.

    Args:
        dim (int): Number of input channels.
        kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
        dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
            Defaults to (1, 3, 5).
        lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
            Defaults to 0.1.
        layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
            Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        kernel_size: int = 3,
        dilation: Tuple[int, int, int] = (1, 3, 5),
        lrelu_slope: float = 0.1,
        layer_scale_init_value: Optional[float] = None,
    ):
        super().__init__()
        self.lrelu_slope = lrelu_slope
        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=self.get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=self.get_padding(kernel_size, dilation[1]),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=self.get_padding(kernel_size, dilation[2]),
                    )
                ),
            ]
        )

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=self.get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=self.get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    nn.Conv1d(
                        dim,
                        dim,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=self.get_padding(kernel_size, 1),
                    )
                ),
            ]
        )

        self.gamma = nn.ParameterList(
            [
                (
                    nn.Parameter(
                        layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
                    )
                    if layer_scale_init_value is not None
                    else None
                ),
                (
                    nn.Parameter(
                        layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
                    )
                    if layer_scale_init_value is not None
                    else None
                ),
                (
                    nn.Parameter(
                        layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
                    )
                    if layer_scale_init_value is not None
                    else None
                ),
            ]
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
            xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
            xt = c1(xt)
            xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
            xt = c2(xt)
            if gamma is not None:
                xt = gamma * xt
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)

    @staticmethod
    def get_padding(kernel_size: int, dilation: int = 1) -> int:
        return int((kernel_size * dilation - dilation) / 2)


class Backbone(nn.Module):
    """Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        """
        Args:
            x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
                        C denotes output features, and L is the sequence length.

        Returns:
            Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
                    and H denotes the model dimension.
        """
        raise NotImplementedError("Subclasses must implement the forward method.")


class VocosBackbone(Backbone):
    """
    Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization

    Args:
        input_channels (int): Number of input features channels.
        dim (int): Hidden dimension of the model.
        intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
        num_layers (int): Number of ConvNeXtBlock layers.
        layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
        adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
                                                None means non-conditional model. Defaults to None.
    """

    def __init__(
        self,
        input_channels: int,
        dim: int,
        intermediate_dim: int,
        num_layers: int,
        layer_scale_init_value: Optional[float] = None,
        adanorm_num_embeddings: Optional[int] = None,
    ):
        super().__init__()
        self.input_channels = input_channels
        self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
        self.adanorm = adanorm_num_embeddings is not None
        if adanorm_num_embeddings:
            self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
        else:
            self.norm = nn.LayerNorm(dim, eps=1e-6)
        layer_scale_init_value = layer_scale_init_value or 1 / num_layers
        self.convnext = nn.ModuleList(
            [
                ConvNeXtBlock(
                    dim=dim,
                    intermediate_dim=intermediate_dim,
                    layer_scale_init_value=layer_scale_init_value,
                    adanorm_num_embeddings=adanorm_num_embeddings,
                )
                for _ in range(num_layers)
            ]
        )
        self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv1d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        bandwidth_id = kwargs.get("bandwidth_id", None)
        x = self.embed(x)
        if self.adanorm:
            assert bandwidth_id is not None
            x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
        else:
            x = self.norm(x.transpose(1, 2))
        x = x.transpose(1, 2)
        for conv_block in self.convnext:
            x = conv_block(x, cond_embedding_id=bandwidth_id)
        x = self.final_layer_norm(x.transpose(1, 2))
        return x


class VocosResNetBackbone(Backbone):
    """
    Vocos backbone module built with ResBlocks.

    Args:
        input_channels (int): Number of input features channels.
        dim (int): Hidden dimension of the model.
        num_blocks (int): Number of ResBlock1 blocks.
        layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
    """

    def __init__(
        self,
        input_channels,
        dim,
        num_blocks,
        layer_scale_init_value=None,
    ):
        super().__init__()
        self.input_channels = input_channels
        self.embed = weight_norm(
            nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
        )
        layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
        self.resnet = nn.Sequential(
            *[
                ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
                for _ in range(num_blocks)
            ]
        )

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        x = self.embed(x)
        x = self.resnet(x)
        x = x.transpose(1, 2)
        return x


class Vocos(nn.Module):
    def __init__(
        self,
        input_channels: int = 256,
        dim: int = 384,
        intermediate_dim: int = 1152,
        num_layers: int = 8,
        n_fft: int = 800,
        hop_size: int = 200,
        padding: str = "same",
        adanorm_num_embeddings=None,
        cfg=None,
    ):
        super().__init__()

        input_channels = (
            cfg.input_channels
            if cfg is not None and hasattr(cfg, "input_channels")
            else input_channels
        )
        dim = cfg.dim if cfg is not None and hasattr(cfg, "dim") else dim
        intermediate_dim = (
            cfg.intermediate_dim
            if cfg is not None and hasattr(cfg, "intermediate_dim")
            else intermediate_dim
        )
        num_layers = (
            cfg.num_layers
            if cfg is not None and hasattr(cfg, "num_layers")
            else num_layers
        )
        adanorm_num_embeddings = (
            cfg.adanorm_num_embeddings
            if cfg is not None and hasattr(cfg, "adanorm_num_embeddings")
            else adanorm_num_embeddings
        )
        n_fft = cfg.n_fft if cfg is not None and hasattr(cfg, "n_fft") else n_fft
        hop_size = (
            cfg.hop_size if cfg is not None and hasattr(cfg, "hop_size") else hop_size
        )
        padding = (
            cfg.padding if cfg is not None and hasattr(cfg, "padding") else padding
        )

        self.backbone = VocosBackbone(
            input_channels=input_channels,
            dim=dim,
            intermediate_dim=intermediate_dim,
            num_layers=num_layers,
            adanorm_num_embeddings=adanorm_num_embeddings,
        )
        self.head = ISTFTHead(dim, n_fft, hop_size, padding)

    def forward(self, x):
        x = self.backbone(x)
        x = self.head(x)

        return x[:, None, :]