File size: 2,619 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
import pyworld as pw
import numpy as np
import soundfile as sf
import os
from torchaudio.functional import pitch_shift
import librosa
from librosa.filters import mel as librosa_mel_fn
import torch.nn as nn
import torch.nn.functional as F


def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)


def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C


def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C


def spectral_normalize_torch(magnitudes):
    output = dynamic_range_compression_torch(magnitudes)
    return output


def spectral_de_normalize_torch(magnitudes):
    output = dynamic_range_decompression_torch(magnitudes)
    return output


class MelSpectrogram(nn.Module):
    def __init__(
        self,
        n_fft,
        num_mels,
        sampling_rate,
        hop_size,
        win_size,
        fmin,
        fmax,
        center=False,
    ):
        super(MelSpectrogram, self).__init__()
        self.n_fft = n_fft
        self.hop_size = hop_size
        self.win_size = win_size
        self.sampling_rate = sampling_rate
        self.num_mels = num_mels
        self.fmin = fmin
        self.fmax = fmax
        self.center = center

        mel_basis = {}
        hann_window = {}

        mel = librosa_mel_fn(
            sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
        )
        mel_basis = torch.from_numpy(mel).float()
        hann_window = torch.hann_window(win_size)

        self.register_buffer("mel_basis", mel_basis)
        self.register_buffer("hann_window", hann_window)

    def forward(self, y):
        y = torch.nn.functional.pad(
            y.unsqueeze(1),
            (
                int((self.n_fft - self.hop_size) / 2),
                int((self.n_fft - self.hop_size) / 2),
            ),
            mode="reflect",
        )
        y = y.squeeze(1)
        spec = torch.stft(
            y,
            self.n_fft,
            hop_length=self.hop_size,
            win_length=self.win_size,
            window=self.hann_window,
            center=self.center,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=True,
        )
        spec = torch.view_as_real(spec)

        spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))

        spec = torch.matmul(self.mel_basis, spec)
        spec = spectral_normalize_torch(spec)

        return spec