|
|
|
|
|
import logging |
|
import contextlib |
|
import torch |
|
from torch import Tensor |
|
from torch.optim.lr_scheduler import _LRScheduler |
|
from torch.optim import Optimizer |
|
from typing import List, Tuple |
|
from collections import defaultdict |
|
|
|
|
|
class NoamLR(_LRScheduler): |
|
""" |
|
Implements the Noam Learning rate schedule. This corresponds to increasing the learning rate |
|
linearly for the first ``num_warmup`` training steps, and decreasing it thereafter proportionally |
|
to the inverse square root of the step number, scaled by the inverse square root of the |
|
dimensionality of the model. Time will tell if this is just madness or it's actually important. |
|
Parameters |
|
---------- |
|
num_warmup: ``int``, required. |
|
The number of steps to linearly increase the learning rate. |
|
""" |
|
|
|
def __init__(self, optimizer, num_warmup): |
|
self.num_warmup = num_warmup |
|
self.base_lr = optimizer.param_groups[0]["lr"] |
|
super().__init__(optimizer) |
|
|
|
def get_lr(self): |
|
last_epoch = max(1, self.last_epoch) |
|
scale = min(last_epoch ** (-0.5), last_epoch * self.num_warmup ** (-1.5)) |
|
return [scale * self.base_lr] |
|
|
|
|
|
class Eve(Optimizer): |
|
""" |
|
Implements Eve algorithm. This is a modified version of AdamW with a special |
|
way of setting the weight-decay / shrinkage-factor, which is designed to make the |
|
rms of the parameters approach a particular target_rms (default: 0.1). This is |
|
for use with networks with 'scaled' versions of modules (see scaling.py), which |
|
will be close to invariant to the absolute scale on the parameter matrix. |
|
|
|
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. |
|
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. |
|
Eve is unpublished so far. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay coefficient (default: 3e-4; |
|
this value means that the weight would decay significantly after |
|
about 3k minibatches. Is not multiplied by learning rate, but |
|
is conditional on RMS-value of parameter being > target_rms. |
|
target_rms (float, optional): target root-mean-square value of |
|
parameters, if they fall below this we will stop applying weight decay. |
|
|
|
|
|
.. _Adam: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _Decoupled Weight Decay Regularization: |
|
https://arxiv.org/abs/1711.05101 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
betas=(0.9, 0.98), |
|
eps=1e-8, |
|
weight_decay=1e-3, |
|
target_rms=0.1, |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
if not 0 <= weight_decay <= 0.1: |
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
|
if not 0 < target_rms <= 10.0: |
|
raise ValueError("Invalid target_rms value: {}".format(target_rms)) |
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
target_rms=target_rms, |
|
) |
|
super(Eve, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(Eve, self).__setstate__(state) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
|
|
|
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError("AdamW does not support sparse gradients") |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
state["exp_avg"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
|
|
beta1, beta2 = group["betas"] |
|
|
|
state["step"] += 1 |
|
bias_correction1 = 1 - beta1 ** state["step"] |
|
bias_correction2 = 1 - beta2 ** state["step"] |
|
|
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
denom = (exp_avg_sq.sqrt() * (bias_correction2**-0.5)).add_( |
|
group["eps"] |
|
) |
|
|
|
step_size = group["lr"] / bias_correction1 |
|
target_rms = group["target_rms"] |
|
weight_decay = group["weight_decay"] |
|
|
|
if p.numel() > 1: |
|
|
|
|
|
is_above_target_rms = p.norm() > (target_rms * (p.numel() ** 0.5)) |
|
p.mul_(1 - (weight_decay * is_above_target_rms)) |
|
|
|
p.addcdiv_(exp_avg, denom, value=-step_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return loss |
|
|
|
|
|
class BatchedOptimizer(Optimizer): |
|
""" |
|
This class adds to class Optimizer the capability to optimize parameters in batches: |
|
it will stack the parameters and their grads for you so the optimizer can work |
|
on tensors with an extra leading dimension. This is intended for speed with GPUs, |
|
as it reduces the number of kernels launched in the optimizer. |
|
|
|
Args: |
|
params: |
|
""" |
|
|
|
def __init__(self, params, defaults): |
|
super(BatchedOptimizer, self).__init__(params, defaults) |
|
|
|
@contextlib.contextmanager |
|
def batched_params(self, param_group, group_params_names): |
|
""" |
|
This function returns (technically, yields) a list of |
|
of tuples (p, state), where |
|
p is a `fake` parameter that is stacked (over axis 0) from real parameters |
|
that share the same shape, and its gradient is also stacked; |
|
`state` is the state corresponding to this batch of parameters |
|
(it will be physically located in the "state" for one of the real |
|
parameters, the last one that has any particular shape and dtype). |
|
|
|
This function is decorated as a context manager so that it can |
|
write parameters back to their "real" locations. |
|
|
|
The idea is, instead of doing: |
|
<code> |
|
for p in group["params"]: |
|
state = self.state[p] |
|
... |
|
</code> |
|
you can do: |
|
<code> |
|
with self.batched_params(group["params"]) as batches: |
|
for p, state, p_names in batches: |
|
... |
|
</code> |
|
|
|
Args: |
|
group: a parameter group, which is a list of parameters; should be |
|
one of self.param_groups. |
|
group_params_names: name for each parameter in group, |
|
which is List[str]. |
|
""" |
|
batches = defaultdict( |
|
list |
|
) |
|
batches_names = defaultdict( |
|
list |
|
) |
|
|
|
assert len(param_group) == len(group_params_names) |
|
for p, named_p in zip(param_group, group_params_names): |
|
key = (str(p.dtype), *p.shape) |
|
batches[key].append(p) |
|
batches_names[key].append(named_p) |
|
|
|
batches_names_keys = list(batches_names.keys()) |
|
sorted_idx = sorted( |
|
range(len(batches_names)), key=lambda i: batches_names_keys[i] |
|
) |
|
batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx] |
|
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] |
|
|
|
stacked_params_dict = dict() |
|
|
|
|
|
|
|
|
|
tuples = [] |
|
|
|
for batch, batch_names in zip(batches, batches_names): |
|
p = batch[0] |
|
|
|
|
|
|
|
state = self.state[p] |
|
p_stacked = torch.stack(batch) |
|
grad = torch.stack( |
|
[torch.zeros_like(p) if p.grad is None else p.grad for p in batch] |
|
) |
|
p_stacked.grad = grad |
|
stacked_params_dict[key] = p_stacked |
|
tuples.append((p_stacked, state, batch_names)) |
|
|
|
yield tuples |
|
|
|
for (stacked_params, _state, _names), batch in zip(tuples, batches): |
|
for i, p in enumerate(batch): |
|
p.copy_(stacked_params[i]) |
|
|
|
|
|
class ScaledAdam(BatchedOptimizer): |
|
""" |
|
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update |
|
proportional to the norm of that parameter; and also learn the scale of the parameter, |
|
in log space, subject to upper and lower limits (as if we had factored each parameter as |
|
param = underlying_param * log_scale.exp()) |
|
|
|
|
|
Args: |
|
params: The parameters or param_groups to optimize (like other Optimizer subclasses) |
|
lr: The learning rate. We will typically use a learning rate schedule that starts |
|
at 0.03 and decreases over time, i.e. much higher than other common |
|
optimizers. |
|
clipping_scale: (e.g. 2.0) |
|
A scale for gradient-clipping: if specified, the normalized gradients |
|
over the whole model will be clipped to have 2-norm equal to |
|
`clipping_scale` times the median 2-norm over the most recent period |
|
of `clipping_update_period` minibatches. By "normalized gradients", |
|
we mean after multiplying by the rms parameter value for this tensor |
|
[for non-scalars]; this is appropriate because our update is scaled |
|
by this quantity. |
|
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad. |
|
Must satisfy 0 < beta <= beta2 < 1. |
|
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the |
|
scale of each parameter tensor and scalar parameters of the mode.. |
|
If each parameter were decomposed |
|
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale |
|
would be a the scaling factor on the learning rate of p_scale. |
|
eps: A general-purpose epsilon to prevent division by zero |
|
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of |
|
learning the scale on the parameters (we'll constrain the rms of each non-scalar |
|
parameter tensor to be >= this value) |
|
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of |
|
learning the scale on the parameters (we'll constrain the rms of each non-scalar |
|
parameter tensor to be <= this value) |
|
scalar_max: Maximum absolute value for scalar parameters (applicable if your |
|
model has any parameters with numel() == 1). |
|
size_update_period: The periodicity, in steps, with which we update the size (scale) |
|
of the parameter tensor. This is provided to save a little time |
|
in the update. |
|
clipping_update_period: if clipping_scale is specified, this is the period |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=3e-02, |
|
clipping_scale=None, |
|
betas=(0.9, 0.98), |
|
scalar_lr_scale=0.1, |
|
eps=1.0e-08, |
|
param_min_rms=1.0e-05, |
|
param_max_rms=3.0, |
|
scalar_max=10.0, |
|
size_update_period=4, |
|
clipping_update_period=100, |
|
parameters_names=None, |
|
show_dominant_parameters=True, |
|
): |
|
assert parameters_names is not None, ( |
|
"Please prepare parameters_names," |
|
"which is a List[List[str]]. Each List[str] is for a group" |
|
"and each str is for a parameter" |
|
) |
|
defaults = dict( |
|
lr=lr, |
|
clipping_scale=clipping_scale, |
|
betas=betas, |
|
scalar_lr_scale=scalar_lr_scale, |
|
eps=eps, |
|
param_min_rms=param_min_rms, |
|
param_max_rms=param_max_rms, |
|
scalar_max=scalar_max, |
|
size_update_period=size_update_period, |
|
clipping_update_period=clipping_update_period, |
|
) |
|
|
|
super(ScaledAdam, self).__init__(params, defaults) |
|
assert len(self.param_groups) == len(parameters_names) |
|
self.parameters_names = parameters_names |
|
self.show_dominant_parameters = show_dominant_parameters |
|
|
|
def __setstate__(self, state): |
|
super(ScaledAdam, self).__setstate__(state) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
batch = True |
|
|
|
for group, group_params_names in zip(self.param_groups, self.parameters_names): |
|
with self.batched_params(group["params"], group_params_names) as batches: |
|
|
|
|
|
|
|
|
|
if len(batches[0][1]) == 0: |
|
clipping_scale = 1 |
|
else: |
|
clipping_scale = self._get_clipping_scale(group, batches) |
|
|
|
for p, state, _ in batches: |
|
|
|
|
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"ScaledAdam optimizer does not support sparse gradients" |
|
) |
|
|
|
if len(state) == 0: |
|
self._init_state(group, p, state) |
|
|
|
self._step_one_batch(group, p, state, clipping_scale) |
|
|
|
return loss |
|
|
|
def _init_state(self, group: dict, p: Tensor, state: dict): |
|
""" |
|
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p |
|
is actually the batch dimension, corresponding to batched-together |
|
parameters of a given shape. |
|
|
|
|
|
Args: |
|
group: Dict to look up configuration values. |
|
p: The parameter that we are initializing the state for |
|
state: Dict from string to whatever state we are initializing |
|
""" |
|
size_update_period = group["size_update_period"] |
|
|
|
state["step"] = 0 |
|
|
|
kwargs = {"device": p.device, "dtype": p.dtype} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
batch_size = p.shape[0] |
|
numel = p.numel() // batch_size |
|
numel = p.numel() |
|
|
|
if numel > 1: |
|
|
|
|
|
|
|
param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() |
|
state["param_rms"] = param_rms |
|
|
|
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms) |
|
state["scale_grads"] = torch.zeros( |
|
size_update_period, *param_rms.shape, **kwargs |
|
) |
|
|
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
|
|
def _get_clipping_scale( |
|
self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]] |
|
) -> float: |
|
""" |
|
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients |
|
by this amount before applying the rest of the update. |
|
|
|
Args: |
|
group: the parameter group, an item in self.param_groups |
|
tuples: a list of tuples of (param, state, param_names) |
|
where param is a batched set of parameters, |
|
with a .grad (1st dim is batch dim) |
|
and state is the state-dict where optimization parameters are kept. |
|
param_names is a List[str] while each str is name for a parameter |
|
in batched set of parameters "param". |
|
""" |
|
assert len(tuples) >= 1 |
|
clipping_scale = group["clipping_scale"] |
|
(first_p, first_state, _) = tuples[0] |
|
step = first_state["step"] |
|
if clipping_scale is None or step == 0: |
|
|
|
|
|
return 1.0 |
|
clipping_update_period = group["clipping_update_period"] |
|
|
|
tot_sumsq = torch.tensor(0.0, device=first_p.device) |
|
for p, state, param_names in tuples: |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"ScaledAdam optimizer does not support sparse gradients" |
|
) |
|
if p.numel() == p.shape[0]: |
|
tot_sumsq += (grad**2).sum() |
|
else: |
|
tot_sumsq += ((grad * state["param_rms"]) ** 2).sum() |
|
|
|
tot_norm = tot_sumsq.sqrt() |
|
if "model_norms" not in first_state: |
|
first_state["model_norms"] = torch.zeros( |
|
clipping_update_period, device=p.device |
|
) |
|
first_state["model_norms"][step % clipping_update_period] = tot_norm |
|
|
|
if step % clipping_update_period == 0: |
|
|
|
|
|
|
|
sorted_norms = first_state["model_norms"].sort()[0].to("cpu") |
|
quartiles = [] |
|
for n in range(0, 5): |
|
index = min( |
|
clipping_update_period - 1, |
|
(clipping_update_period // 4) * n, |
|
) |
|
quartiles.append(sorted_norms[index].item()) |
|
|
|
median = quartiles[2] |
|
threshold = clipping_scale * median |
|
first_state["model_norm_threshold"] = threshold |
|
percent_clipped = ( |
|
first_state["num_clipped"] * 100.0 / clipping_update_period |
|
if "num_clipped" in first_state |
|
else 0.0 |
|
) |
|
first_state["num_clipped"] = 0 |
|
quartiles = " ".join(["%.3e" % x for x in quartiles]) |
|
logging.info( |
|
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, " |
|
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}" |
|
) |
|
|
|
if step < clipping_update_period: |
|
return 1.0 |
|
else: |
|
try: |
|
model_norm_threshold = first_state["model_norm_threshold"] |
|
except KeyError: |
|
logging.info( |
|
"Warning: model_norm_threshold not in state: possibly " |
|
"you changed config when restarting, adding clipping_scale option?" |
|
) |
|
return 1.0 |
|
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item()) |
|
if ans < 1.0: |
|
first_state["num_clipped"] += 1 |
|
if ans < 0.1: |
|
logging.warn( |
|
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}" |
|
) |
|
if self.show_dominant_parameters: |
|
assert p.shape[0] == len(param_names) |
|
self._show_gradient_dominating_parameter(tuples, tot_sumsq) |
|
return ans |
|
|
|
def _show_gradient_dominating_parameter( |
|
self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor |
|
): |
|
""" |
|
Show information of parameter wihch dominanting tot_sumsq. |
|
|
|
Args: |
|
tuples: a list of tuples of (param, state, param_names) |
|
where param is a batched set of parameters, |
|
with a .grad (1st dim is batch dim) |
|
and state is the state-dict where optimization parameters are kept. |
|
param_names is a List[str] while each str is name for a parameter |
|
in batched set of parameters "param". |
|
tot_sumsq: sumsq of all parameters. Though it's could be calculated |
|
from tuples, we still pass it to save some time. |
|
""" |
|
all_sumsq_orig = {} |
|
for p, state, batch_param_names in tuples: |
|
|
|
batch_grad = p.grad |
|
if p.numel() == p.shape[0]: |
|
batch_sumsq_orig = batch_grad**2 |
|
|
|
batch_rms_orig = torch.ones(p.shape[0]) |
|
else: |
|
batch_rms_orig = state["param_rms"] |
|
batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum( |
|
dim=list(range(1, batch_grad.ndim)) |
|
) |
|
|
|
for name, sumsq_orig, rms, grad in zip( |
|
batch_param_names, batch_sumsq_orig, batch_rms_orig, batch_grad |
|
): |
|
proportion_orig = sumsq_orig / tot_sumsq |
|
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad) |
|
|
|
assert torch.isclose( |
|
sum([value[0] for value in all_sumsq_orig.values()]).cpu(), |
|
torch.tensor(1.0), |
|
) |
|
sorted_by_proportion = { |
|
k: v |
|
for k, v in sorted( |
|
all_sumsq_orig.items(), |
|
key=lambda item: item[1][0], |
|
reverse=True, |
|
) |
|
} |
|
dominant_param_name = next(iter(sorted_by_proportion)) |
|
( |
|
dominant_proportion, |
|
dominant_sumsq, |
|
dominant_rms, |
|
dominant_grad, |
|
) = sorted_by_proportion[dominant_param_name] |
|
logging.info( |
|
f"Parameter Dominanting tot_sumsq {dominant_param_name}" |
|
f" with proportion {dominant_proportion:.2f}," |
|
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)" |
|
f"={dominant_sumsq:.3e}," |
|
f" grad_sumsq = {(dominant_grad**2).sum():.3e}," |
|
f" orig_rms_sq={(dominant_rms**2).item():.3e}" |
|
) |
|
|
|
def _step_one_batch( |
|
self, group: dict, p: Tensor, state: dict, clipping_scale: float |
|
): |
|
""" |
|
Do the step for one parameter, which is actually going to be a batch of |
|
`real` parameters, with dim 0 as the batch dim. |
|
Args: |
|
group: dict to look up configuration values |
|
p: parameter to update (actually multiple parameters stacked together |
|
as a batch) |
|
state: state-dict for p, to look up the optimizer state |
|
""" |
|
lr = group["lr"] |
|
size_update_period = group["size_update_period"] |
|
beta1 = group["betas"][0] |
|
|
|
grad = p.grad |
|
if clipping_scale != 1.0: |
|
grad = grad * clipping_scale |
|
step = state["step"] |
|
delta = state["delta"] |
|
|
|
delta.mul_(beta1) |
|
batch_size = p.shape[0] |
|
numel = p.numel() // batch_size |
|
if numel > 1: |
|
|
|
scale_grads = state["scale_grads"] |
|
scale_grads[step % size_update_period] = (p * grad).sum( |
|
dim=list(range(1, p.ndim)), keepdim=True |
|
) |
|
if step % size_update_period == size_update_period - 1: |
|
param_rms = state["param_rms"] |
|
param_rms.copy_( |
|
(p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt() |
|
) |
|
if step > 0: |
|
|
|
|
|
self._size_update(group, scale_grads, p, state) |
|
|
|
if numel == 1: |
|
|
|
|
|
self._step_scalar(group, p, state) |
|
else: |
|
self._step(group, p, state) |
|
|
|
state["step"] = step + 1 |
|
|
|
def _size_update( |
|
self, group: dict, scale_grads: Tensor, p: Tensor, state: dict |
|
) -> None: |
|
""" |
|
Called only where p.numel() > 1, this updates the scale of the parameter. |
|
If we imagine: p = underlying_param * scale.exp(), and we are doing |
|
gradient descent on underlying param and on scale, this function does the update |
|
on `scale`. |
|
|
|
Args: |
|
group: dict to look up configuration values |
|
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing |
|
grads w.r.t. the scales. |
|
p: The parameter to update |
|
state: The state-dict of p |
|
""" |
|
|
|
param_rms = state["param_rms"] |
|
beta1, beta2 = group["betas"] |
|
size_lr = group["lr"] * group["scalar_lr_scale"] |
|
param_min_rms = group["param_min_rms"] |
|
param_max_rms = group["param_max_rms"] |
|
eps = group["eps"] |
|
step = state["step"] |
|
batch_size = p.shape[0] |
|
|
|
size_update_period = scale_grads.shape[0] |
|
|
|
|
|
beta2_corr = beta2**size_update_period |
|
|
|
scale_exp_avg_sq = state["scale_exp_avg_sq"] |
|
scale_exp_avg_sq.mul_(beta2_corr).add_( |
|
(scale_grads**2).mean(dim=0), |
|
alpha=1 - beta2_corr, |
|
) |
|
|
|
|
|
size_step = (step + 1) // size_update_period |
|
bias_correction2 = 1 - beta2_corr**size_step |
|
|
|
|
|
|
|
denom = scale_exp_avg_sq.sqrt() + eps |
|
|
|
scale_step = -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom |
|
|
|
is_too_small = param_rms < param_min_rms |
|
is_too_large = param_rms > param_max_rms |
|
|
|
|
|
scale_step.masked_fill_(is_too_small, 0.0) |
|
|
|
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period) |
|
delta = state["delta"] |
|
|
|
delta.add_(p * scale_step, alpha=(1 - beta1)) |
|
|
|
def _step(self, group: dict, p: Tensor, state: dict): |
|
""" |
|
This function does the core update of self.step(), in the case where the members of |
|
the batch have more than 1 element. |
|
|
|
Args: |
|
group: A dict which will be used to look up configuration values |
|
p: The parameter to be updated |
|
grad: The grad of p |
|
state: The state-dict corresponding to parameter p |
|
|
|
This function modifies p. |
|
""" |
|
grad = p.grad |
|
lr = group["lr"] |
|
beta1, beta2 = group["betas"] |
|
eps = group["eps"] |
|
param_min_rms = group["param_min_rms"] |
|
step = state["step"] |
|
|
|
exp_avg_sq = state["exp_avg_sq"] |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) |
|
|
|
this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0) |
|
bias_correction2 = 1 - beta2 ** (this_step + 1) |
|
if bias_correction2 < 0.99: |
|
|
|
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2) |
|
|
|
denom = exp_avg_sq.sqrt() |
|
denom += eps |
|
grad = grad / denom |
|
|
|
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms) |
|
|
|
delta = state["delta"] |
|
delta.add_(grad * alpha) |
|
p.add_(delta) |
|
|
|
def _step_scalar(self, group: dict, p: Tensor, state: dict): |
|
""" |
|
A simplified form of the core update for scalar tensors, where we cannot get a good |
|
estimate of the parameter rms. |
|
""" |
|
beta1, beta2 = group["betas"] |
|
scalar_max = group["scalar_max"] |
|
eps = group["eps"] |
|
lr = group["lr"] * group["scalar_lr_scale"] |
|
grad = p.grad |
|
|
|
exp_avg_sq = state["exp_avg_sq"] |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
|
|
|
|
bias_correction2 = 1 - beta2 ** (state["step"] + 1) |
|
denom = (exp_avg_sq / bias_correction2).sqrt() + eps |
|
|
|
delta = state["delta"] |
|
delta.add_(grad / denom, alpha=-lr * (1 - beta1)) |
|
p.clamp_(min=-scalar_max, max=scalar_max) |
|
p.add_(delta) |
|
|