|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
import onnxruntime as ort |
|
from tqdm import tqdm |
|
|
|
|
|
class ConvTDFNet: |
|
""" |
|
ConvTDFNet - Convolutional Temporal Frequency Domain Network. |
|
""" |
|
|
|
def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024): |
|
""" |
|
Initialize ConvTDFNet. |
|
|
|
Args: |
|
target_name (str): The target name for separation. |
|
L (int): Number of layers. |
|
dim_f (int): Dimension in the frequency domain. |
|
dim_t (int): Dimension in the time domain (log2). |
|
n_fft (int): FFT size. |
|
hop (int, optional): Hop size. Defaults to 1024. |
|
|
|
Returns: |
|
None |
|
""" |
|
super(ConvTDFNet, self).__init__() |
|
self.dim_c = 4 |
|
self.dim_f = dim_f |
|
self.dim_t = 2**dim_t |
|
self.n_fft = n_fft |
|
self.hop = hop |
|
self.n_bins = self.n_fft // 2 + 1 |
|
self.chunk_size = hop * (self.dim_t - 1) |
|
self.window = torch.hann_window(window_length=self.n_fft, periodic=True) |
|
self.target_name = target_name |
|
|
|
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c |
|
|
|
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]) |
|
self.n = L // 2 |
|
|
|
def stft(self, x): |
|
""" |
|
Perform Short-Time Fourier Transform (STFT). |
|
|
|
Args: |
|
x (torch.Tensor): Input waveform. |
|
|
|
Returns: |
|
torch.Tensor: STFT of the input waveform. |
|
""" |
|
x = x.reshape([-1, self.chunk_size]) |
|
x = torch.stft( |
|
x, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop, |
|
window=self.window, |
|
center=True, |
|
return_complex=True, |
|
) |
|
x = torch.view_as_real(x) |
|
x = x.permute([0, 3, 1, 2]) |
|
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( |
|
[-1, self.dim_c, self.n_bins, self.dim_t] |
|
) |
|
return x[:, :, : self.dim_f] |
|
|
|
def istft(self, x, freq_pad=None): |
|
""" |
|
Perform Inverse Short-Time Fourier Transform (ISTFT). |
|
|
|
Args: |
|
x (torch.Tensor): Input STFT. |
|
freq_pad (torch.Tensor, optional): Frequency padding. Defaults to None. |
|
|
|
Returns: |
|
torch.Tensor: Inverse STFT of the input. |
|
""" |
|
freq_pad = ( |
|
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) |
|
if freq_pad is None |
|
else freq_pad |
|
) |
|
x = torch.cat([x, freq_pad], -2) |
|
c = 4 * 2 if self.target_name == "*" else 2 |
|
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape( |
|
[-1, 2, self.n_bins, self.dim_t] |
|
) |
|
x = x.permute([0, 2, 3, 1]) |
|
x = x.contiguous() |
|
x = torch.view_as_complex(x) |
|
x = torch.istft( |
|
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True |
|
) |
|
return x.reshape([-1, c, self.chunk_size]) |
|
|
|
|
|
class Predictor: |
|
""" |
|
Predictor class for source separation using ConvTDFNet and ONNX Runtime. |
|
""" |
|
|
|
def __init__(self, args, device): |
|
""" |
|
Initialize the Predictor. |
|
|
|
Args: |
|
args (dict): Configuration arguments. |
|
device (str): Device to run the model ('cuda' or 'cpu'). |
|
|
|
Returns: |
|
None |
|
|
|
Raises: |
|
ValueError: If the provided device is not 'cuda' or 'cpu'. |
|
""" |
|
self.args = args |
|
self.model_ = ConvTDFNet( |
|
target_name="vocals", |
|
L=11, |
|
dim_f=args["dim_f"], |
|
dim_t=args["dim_t"], |
|
n_fft=args["n_fft"], |
|
) |
|
|
|
if device == "cuda": |
|
self.model = ort.InferenceSession( |
|
args["model_path"], providers=["CUDAExecutionProvider"] |
|
) |
|
elif device == "cpu": |
|
self.model = ort.InferenceSession( |
|
args["model_path"], providers=["CPUExecutionProvider"] |
|
) |
|
else: |
|
raise ValueError("Device must be either 'cuda' or 'cpu'") |
|
|
|
def demix(self, mix): |
|
""" |
|
Separate the sources from the input mix. |
|
|
|
Args: |
|
mix (np.ndarray): Input mixture signal. |
|
|
|
Returns: |
|
np.ndarray: Separated sources. |
|
|
|
Raises: |
|
AssertionError: If margin is zero. |
|
""" |
|
samples = mix.shape[-1] |
|
margin = self.args["margin"] |
|
chunk_size = self.args["chunks"] * 44100 |
|
|
|
assert margin != 0, "Margin cannot be zero!" |
|
|
|
if margin > chunk_size: |
|
margin = chunk_size |
|
|
|
segmented_mix = {} |
|
|
|
if self.args["chunks"] == 0 or samples < chunk_size: |
|
chunk_size = samples |
|
|
|
counter = -1 |
|
for skip in range(0, samples, chunk_size): |
|
counter += 1 |
|
s_margin = 0 if counter == 0 else margin |
|
end = min(skip + chunk_size + margin, samples) |
|
start = skip - s_margin |
|
segmented_mix[skip] = mix[:, start:end].copy() |
|
if end == samples: |
|
break |
|
|
|
sources = self.demix_base(segmented_mix, margin_size=margin) |
|
return sources |
|
|
|
def demix_base(self, mixes, margin_size): |
|
""" |
|
Base function for source separation. |
|
|
|
Args: |
|
mixes (dict): Dictionary of segmented mixtures. |
|
margin_size (int): Size of the margin. |
|
|
|
Returns: |
|
np.ndarray: Separated sources. |
|
""" |
|
chunked_sources = [] |
|
progress_bar = tqdm(total=len(mixes)) |
|
progress_bar.set_description("Source separation") |
|
|
|
for mix in mixes: |
|
cmix = mixes[mix] |
|
sources = [] |
|
n_sample = cmix.shape[1] |
|
model = self.model_ |
|
trim = model.n_fft // 2 |
|
gen_size = model.chunk_size - 2 * trim |
|
pad = gen_size - n_sample % gen_size |
|
mix_p = np.concatenate( |
|
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1 |
|
) |
|
mix_waves = [] |
|
i = 0 |
|
while i < n_sample + pad: |
|
waves = np.array(mix_p[:, i : i + model.chunk_size]) |
|
mix_waves.append(waves) |
|
i += gen_size |
|
|
|
mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32) |
|
|
|
with torch.no_grad(): |
|
_ort = self.model |
|
spek = model.stft(mix_waves) |
|
if self.args["denoise"]: |
|
spec_pred = ( |
|
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5 |
|
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5 |
|
) |
|
tar_waves = model.istft(torch.tensor(spec_pred)) |
|
else: |
|
tar_waves = model.istft( |
|
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0]) |
|
) |
|
tar_signal = ( |
|
tar_waves[:, :, trim:-trim] |
|
.transpose(0, 1) |
|
.reshape(2, -1) |
|
.numpy()[:, :-pad] |
|
) |
|
|
|
start = 0 if mix == 0 else margin_size |
|
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size |
|
|
|
if margin_size == 0: |
|
end = None |
|
|
|
sources.append(tar_signal[:, start:end]) |
|
|
|
progress_bar.update(1) |
|
|
|
chunked_sources.append(sources) |
|
_sources = np.concatenate(chunked_sources, axis=-1) |
|
|
|
progress_bar.close() |
|
return _sources |
|
|
|
def predict(self, mix): |
|
""" |
|
Predict the separated sources from the input mix. |
|
|
|
Args: |
|
mix (np.ndarray): Input mixture signal. |
|
|
|
Returns: |
|
tuple: Tuple containing the mixture minus the separated sources and the separated sources. |
|
""" |
|
if mix.ndim == 1: |
|
mix = np.asfortranarray([mix, mix]) |
|
|
|
tail = mix.shape[1] % (self.args["chunks"] * 44100) |
|
if mix.shape[1] % (self.args["chunks"] * 44100) != 0: |
|
mix = np.pad( |
|
mix, |
|
( |
|
(0, 0), |
|
( |
|
0, |
|
self.args["chunks"] * 44100 |
|
- mix.shape[1] % (self.args["chunks"] * 44100), |
|
), |
|
), |
|
) |
|
|
|
mix = mix.T |
|
sources = self.demix(mix.T) |
|
opt = sources[0].T |
|
|
|
if tail != 0: |
|
return ((mix - opt)[: -(self.args["chunks"] * 44100 - tail), :], opt) |
|
else: |
|
return ((mix - opt), opt) |
|
|