|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import os |
|
from collections import defaultdict |
|
from tqdm import tqdm |
|
|
|
|
|
def get_uids_and_wav_paths(cfg, dataset, dataset_type): |
|
assert dataset == "bigdata" |
|
dataset_dir = os.path.join( |
|
cfg.OUTPUT_PATH, |
|
"preprocess/{}_version".format(cfg.PREPROCESS_VERSION), |
|
"bigdata/{}".format(cfg.BIGDATA_VERSION), |
|
) |
|
dataset_file = os.path.join( |
|
dataset_dir, "{}.json".format(dataset_type.split("_")[-1]) |
|
) |
|
with open(dataset_file, "r") as f: |
|
utterances = json.load(f) |
|
|
|
|
|
uids = [u["Uid"] for u in utterances] |
|
|
|
|
|
wav_paths = [u["Path"] for u in utterances] |
|
|
|
return uids, wav_paths |
|
|
|
|
|
def take_duration(utt): |
|
return utt["Duration"] |
|
|
|
|
|
def main(output_path, cfg): |
|
datasets = cfg.dataset |
|
|
|
print("-" * 10) |
|
print("Preparing samples for bigdata...") |
|
print("Including: \n{}\n".format("\n".join(datasets))) |
|
|
|
datasets.sort() |
|
bigdata_version = "_".join(datasets) |
|
|
|
save_dir = os.path.join(output_path, bigdata_version) |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
train_output_file = os.path.join(save_dir, "train.json") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
singer_dict_file = os.path.join(save_dir, cfg.preprocess.spk2id) |
|
utt2singer_file = os.path.join(save_dir, cfg.preprocess.utt2spk) |
|
utt2singer = open(utt2singer_file, "a+") |
|
|
|
train = [] |
|
test = [] |
|
|
|
train_total_duration = 0 |
|
test_total_duration = 0 |
|
|
|
|
|
singer_names = set() |
|
|
|
for dataset in datasets: |
|
dataset_path = os.path.join(output_path, dataset) |
|
train_json = os.path.join(dataset_path, "train.json") |
|
test_json = os.path.join(dataset_path, "test.json") |
|
|
|
with open(train_json, "r", encoding="utf-8") as f: |
|
train_utterances = json.load(f) |
|
|
|
with open(test_json, "r", encoding="utf-8") as f: |
|
test_utterances = json.load(f) |
|
|
|
for utt in tqdm(train_utterances): |
|
train.append(utt) |
|
train_total_duration += utt["Duration"] |
|
singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"])) |
|
utt2singer.write( |
|
"{}_{}\t{}_{}\n".format( |
|
utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"] |
|
) |
|
) |
|
|
|
for utt in test_utterances: |
|
test.append(utt) |
|
test_total_duration += utt["Duration"] |
|
singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"])) |
|
utt2singer.write( |
|
"{}_{}\t{}_{}\n".format( |
|
utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"] |
|
) |
|
) |
|
|
|
utt2singer.close() |
|
|
|
train.sort(key=take_duration) |
|
test.sort(key=take_duration) |
|
print("#Train = {}, #Test = {}".format(len(train), len(test))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
singer_names = list(singer_names) |
|
singer_names.sort() |
|
singer_lut = {name: i for i, name in enumerate(singer_names)} |
|
print("#Singers: {}\n".format(len(singer_lut))) |
|
|
|
|
|
with open(train_output_file, "w") as f: |
|
json.dump(train, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
with open(singer_dict_file, "w") as f: |
|
json.dump(singer_lut, f, indent=4, ensure_ascii=False) |
|
|
|
|
|
meta_info = { |
|
"datasets": datasets, |
|
"train": {"size": len(train), "hours": round(train_total_duration / 3600, 4)}, |
|
"test": {"size": len(test), "hours": round(test_total_duration / 3600, 4)}, |
|
"singers": {"size": len(singer_lut)}, |
|
} |
|
singer2mins = defaultdict(float) |
|
for utt in train: |
|
dataset, singer, duration = utt["Dataset"], utt["Singer"], utt["Duration"] |
|
singer2mins["{}_{}".format(dataset, singer)] += duration / 60 |
|
singer2mins = sorted(singer2mins.items(), key=lambda x: x[1], reverse=True) |
|
singer2mins = dict( |
|
zip([i[0] for i in singer2mins], [round(i[1], 2) for i in singer2mins]) |
|
) |
|
meta_info["singers"]["training_minutes"] = singer2mins |
|
|
|
with open(os.path.join(save_dir, "meta_info.json"), "w") as f: |
|
json.dump(meta_info, f, indent=4, ensure_ascii=False) |
|
|
|
for singer, min in singer2mins.items(): |
|
print("Singer {}: {} mins".format(singer, min)) |
|
print("-" * 10, "\n") |
|
|