|
|
|
|
|
|
|
|
|
|
|
import random |
|
import os |
|
import json |
|
import torchaudio |
|
from tqdm import tqdm |
|
from glob import glob |
|
from collections import defaultdict |
|
|
|
from utils.util import has_existed |
|
from preprocessors import GOLDEN_TEST_SAMPLES |
|
|
|
|
|
def get_test_folders(): |
|
golden_samples = GOLDEN_TEST_SAMPLES["kising"] |
|
|
|
golden_folders = [s.split("_")[:1] for s in golden_samples] |
|
|
|
return golden_folders |
|
|
|
|
|
def KiSing_statistics(data_dir): |
|
folders = [] |
|
folders2utts = defaultdict(list) |
|
|
|
folder_infos = glob(data_dir + "/*") |
|
|
|
for folder_info in folder_infos: |
|
folder = folder_info.split("/")[-1] |
|
|
|
folders.append(folder) |
|
|
|
utts = glob(folder_info + "/*.wav") |
|
|
|
for utt in utts: |
|
uid = utt.split("/")[-1].split(".")[0] |
|
folders2utts[folder].append(uid) |
|
|
|
unique_folders = list(set(folders)) |
|
unique_folders.sort() |
|
|
|
print("KiSing: {} unique songs".format(len(unique_folders))) |
|
return folders2utts |
|
|
|
|
|
def main(output_path, dataset_path): |
|
print("-" * 10) |
|
print("Preparing test samples for KiSing...\n") |
|
|
|
save_dir = os.path.join(output_path, "kising") |
|
train_output_file = os.path.join(save_dir, "train.json") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
if has_existed(test_output_file): |
|
return |
|
|
|
|
|
KiSing_dir = dataset_path |
|
|
|
folders2utts = KiSing_statistics(KiSing_dir) |
|
test_folders = get_test_folders() |
|
|
|
|
|
train = [] |
|
test = [] |
|
|
|
train_index_count = 0 |
|
test_index_count = 0 |
|
|
|
train_total_duration = 0 |
|
test_total_duration = 0 |
|
|
|
folder_names = list(folders2utts.keys()) |
|
|
|
for chosen_folder in folder_names: |
|
for chosen_uid in folders2utts[chosen_folder]: |
|
res = { |
|
"Dataset": "kising", |
|
"Singer": "female1", |
|
"Uid": "{}_{}".format(chosen_folder, chosen_uid), |
|
} |
|
res["Path"] = "{}/{}.wav".format(chosen_folder, chosen_uid) |
|
res["Path"] = os.path.join(KiSing_dir, res["Path"]) |
|
assert os.path.exists(res["Path"]) |
|
|
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
res["Duration"] = duration |
|
|
|
if ([chosen_folder]) in test_folders: |
|
res["index"] = test_index_count |
|
test_total_duration += duration |
|
test.append(res) |
|
test_index_count += 1 |
|
else: |
|
res["index"] = train_index_count |
|
train_total_duration += duration |
|
train.append(res) |
|
train_index_count += 1 |
|
|
|
print("#Train = {}, #Test = {}".format(len(train), len(test))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
with open(train_output_file, "w") as f: |
|
json.dump(train, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
|