|
|
|
|
|
|
|
|
|
|
|
import json |
|
from tqdm import tqdm |
|
import os |
|
import torchaudio |
|
import torch |
|
|
|
|
|
from utils.mfa_prepare import ( |
|
process_wav_files, |
|
get_wav_files, |
|
filter_wav_files_by_length, |
|
) |
|
from utils.cut_by_vad import cut_segments |
|
from utils.whisper_transcription import asr_main |
|
from utils.util import has_existed |
|
|
|
import subprocess |
|
import random |
|
from collections import defaultdict |
|
from glob import glob |
|
import shutil |
|
|
|
|
|
def librilight_statistics(data_dir): |
|
"""Get statistics for librilight dataset""" |
|
distribution2speakers2utts = defaultdict(lambda: defaultdict(list)) |
|
distribution_infos = glob(data_dir + "/*") |
|
for distribution_info in distribution_infos: |
|
distribution = distribution_info.split("/")[-1] |
|
print(distribution) |
|
speaker_infos = glob(distribution_info + "/*") |
|
if len(speaker_infos) == 0: |
|
continue |
|
for speaker_info in speaker_infos: |
|
speaker = speaker_info.split("/")[-1] |
|
utts = glob(speaker_info + "/*.wav") |
|
for utt in utts: |
|
uid = utt.split("/")[-1].split(".")[0] |
|
distribution2speakers2utts[distribution][speaker].append(uid) |
|
return distribution2speakers2utts |
|
|
|
|
|
def get_speakers_from_directory(directory): |
|
return [ |
|
d for d in os.listdir(directory) if os.path.isdir(os.path.join(directory, d)) |
|
] |
|
|
|
|
|
def split_dataset_by_speaker(base_dir, train_ratio=0.8, dev_ratio=0.1): |
|
train_dir = os.path.join(base_dir, "train") |
|
dev_dir = os.path.join(base_dir, "dev") |
|
eval_dir = os.path.join(base_dir, "eval") |
|
|
|
|
|
if has_existed(train_dir) or has_existed(dev_dir) or has_existed(eval_dir): |
|
print("Dataset already split. Calculating speakers...") |
|
train_speakers = get_speakers_from_directory(train_dir) |
|
dev_speakers = get_speakers_from_directory(dev_dir) |
|
eval_speakers = get_speakers_from_directory(eval_dir) |
|
all_speakers = train_speakers + dev_speakers + eval_speakers |
|
unique_speakers = list(set(all_speakers)) |
|
unique_speakers.sort() |
|
return unique_speakers |
|
|
|
|
|
all_speakers = [ |
|
d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d)) |
|
] |
|
random.shuffle(all_speakers) |
|
|
|
|
|
total_speakers = len(all_speakers) |
|
train_size = int(total_speakers * train_ratio) |
|
dev_size = int(total_speakers * dev_ratio) |
|
eval_size = total_speakers - train_size - dev_size |
|
print("Total speakers:", total_speakers) |
|
print("Train speakers:", train_size) |
|
print("Dev speakers:", dev_size) |
|
print("Eval speakers:", eval_size) |
|
|
|
|
|
train_speakers = all_speakers[:train_size] |
|
dev_speakers = all_speakers[train_size : train_size + dev_size] |
|
eval_speakers = all_speakers[train_size + dev_size :] |
|
|
|
|
|
def move_speakers(speakers, target_dir): |
|
for speaker in speakers: |
|
shutil.move( |
|
os.path.join(base_dir, speaker), os.path.join(target_dir, speaker) |
|
) |
|
|
|
|
|
print("Moving directories...") |
|
print("Moving Train speakers...") |
|
move_speakers(train_speakers, train_dir) |
|
print("Moving Dev speakers...") |
|
move_speakers(dev_speakers, dev_dir) |
|
print("Moving Eval speakers...") |
|
move_speakers(eval_speakers, eval_dir) |
|
|
|
unique_speakers = list(set(all_speakers)) |
|
unique_speakers.sort() |
|
return unique_speakers |
|
|
|
|
|
def save_meta_data(save_dir, processed_dir, distribution2speakers2utts, speakers): |
|
"""Save metadata for librilight dataset""" |
|
os.makedirs(save_dir, exist_ok=True) |
|
train_output_file = os.path.join(save_dir, "train.json") |
|
valid_output_file = os.path.join(save_dir, "dev.json") |
|
test_output_file = os.path.join(save_dir, "eval.json") |
|
singer_dict_file = os.path.join(save_dir, "singers.json") |
|
utt2singer_file = os.path.join(save_dir, "utt2singer") |
|
utt2singer = open(utt2singer_file, "w") |
|
if has_existed(train_output_file): |
|
print("Metadata already exists. Skipping...") |
|
return |
|
|
|
train = [] |
|
test = [] |
|
valid = [] |
|
|
|
train_index_count = 0 |
|
test_index_count = 0 |
|
valid_index_count = 0 |
|
|
|
train_total_duration = 0 |
|
test_total_duration = 0 |
|
valid_total_duration = 0 |
|
|
|
|
|
for distribution, speakers2utts in tqdm(distribution2speakers2utts.items()): |
|
for speaker, utts in tqdm(speakers2utts.items()): |
|
for chosen_uid in utts: |
|
res = { |
|
"Dataset": "librilight", |
|
"Singer": speaker, |
|
"Uid": "{}#{}#{}".format(distribution, speaker, chosen_uid), |
|
} |
|
res["Path"] = "{}/{}/{}.wav".format(distribution, speaker, chosen_uid) |
|
res["Path"] = os.path.join(processed_dir, res["Path"]) |
|
assert os.path.exists(res["Path"]) |
|
|
|
text_file_path = os.path.join( |
|
processed_dir, |
|
distribution, |
|
speaker, |
|
chosen_uid + ".txt", |
|
) |
|
with open(text_file_path, "r") as f: |
|
lines = f.readlines() |
|
assert len(lines) == 1 |
|
text = lines[0].strip() |
|
res["Text"] = text |
|
|
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
res["Duration"] = duration |
|
|
|
if "train" in distribution: |
|
res["index"] = train_index_count |
|
train_total_duration += duration |
|
train.append(res) |
|
train_index_count += 1 |
|
elif "dev" in distribution: |
|
res["index"] = valid_index_count |
|
valid_total_duration += duration |
|
valid.append(res) |
|
valid_index_count += 1 |
|
elif "eval" in distribution: |
|
res["index"] = test_index_count |
|
test_total_duration += duration |
|
test.append(res) |
|
test_index_count += 1 |
|
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"])) |
|
print("Done!") |
|
print( |
|
"Utterance count: train = {}, dev = {}, eval = {}".format( |
|
len(train), len(valid), len(test) |
|
) |
|
) |
|
print( |
|
"#Train duration= {}, #Dev duration= {}, #Eval duration= {}".format( |
|
train_total_duration / 3600, |
|
valid_total_duration / 3600, |
|
test_total_duration / 3600, |
|
) |
|
) |
|
with open(train_output_file, "w") as f: |
|
json.dump(train, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
with open(valid_output_file, "w") as f: |
|
json.dump(valid, f, indent=4, ensure_ascii=False) |
|
utt2singer.close() |
|
singer_lut = {name: i for i, name in enumerate(speakers)} |
|
with open(singer_dict_file, "w") as f: |
|
json.dump(singer_lut, f, indent=4, ensure_ascii=False) |
|
print("Metadata saved to", save_dir) |
|
|
|
|
|
def main(output_path, dataset_path, cfg): |
|
"""Preprocess librilight dataset""" |
|
n_cpus = cfg.n_cpus |
|
n_gpus = cfg.n_gpus |
|
cut_length = cfg.cut_length |
|
max_length = cfg.max_length |
|
|
|
|
|
mfa_config_path = cfg.mfa_config_path |
|
mfa_dict_path = cfg.mfa_dict_path |
|
mfa_model_path = cfg.mfa_model_path |
|
|
|
|
|
if ( |
|
not os.path.exists(mfa_dict_path) |
|
or not os.path.exists(mfa_model_path) |
|
or not os.path.exists(mfa_config_path) |
|
): |
|
raise Exception("MFA files not found.") |
|
|
|
|
|
model_id = cfg.whisper_model_id |
|
|
|
subsets = [ |
|
d |
|
for d in os.listdir(dataset_path) |
|
if ( |
|
os.path.isdir(os.path.join(dataset_path, d)) |
|
and d in ["tiny", "small", "medium", "large"] |
|
) |
|
] |
|
print("Found subsets:", subsets) |
|
|
|
if len(subsets) == 0: |
|
print("No subsets found. Exiting...") |
|
return |
|
|
|
for subset in subsets: |
|
|
|
print("Pre-proccessing Libri-light subset:", subset) |
|
raw_dir = f"{dataset_path}/{subset}" |
|
save_dir = f"{output_path}/{subset}" |
|
processed_dir = f"{dataset_path}/processed/{subset}" |
|
os.makedirs(processed_dir, exist_ok=True) |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
print("-" * 10) |
|
print("Step 1: Segmentation") |
|
print("Cutting audio files...") |
|
|
|
cut_segments(raw_dir, processed_dir, cut_length, n_cpus) |
|
|
|
|
|
print("-" * 10) |
|
print("Step 2 & 3: Filter and Preprocess") |
|
print("Filtering and preprocessing audio files...") |
|
|
|
wav_files = get_wav_files(processed_dir) |
|
filtered_wav_files = filter_wav_files_by_length(wav_files, max_length) |
|
process_wav_files(filtered_wav_files, processed_dir, n_cpus) |
|
|
|
|
|
print("-" * 10) |
|
print("Step 4 & 5: Transcription & Text-preprocess") |
|
print("Transcribing audio files...") |
|
|
|
n_gpus = min(n_gpus, torch.cuda.device_count()) |
|
asr_main(processed_dir, n_gpus, model_id) |
|
|
|
|
|
print("-" * 10) |
|
print("Step 6: MFA Align") |
|
print("Aligning audio files...") |
|
|
|
command = [ |
|
"mfa", |
|
"align", |
|
"-v", |
|
"-j", |
|
str(n_cpus), |
|
"-c", |
|
mfa_config_path, |
|
processed_dir, |
|
mfa_dict_path, |
|
mfa_model_path, |
|
processed_dir, |
|
"--output_format", |
|
"long_textgrid", |
|
"--clean", |
|
"--overwrite", |
|
] |
|
subprocess.run(command, text=True) |
|
|
|
|
|
print("-" * 10) |
|
print("Step 7: train/dev/eval split") |
|
print("Splitting dataset by speaker...") |
|
|
|
speakers = split_dataset_by_speaker(processed_dir) |
|
|
|
|
|
print("-" * 10) |
|
print("Step 8: Statistics") |
|
print("Calculating statistics...") |
|
|
|
distribution2speakers2utts = librilight_statistics(processed_dir) |
|
|
|
|
|
print("-" * 10) |
|
print("Step 9: Save metadata") |
|
print("Preparing Metadata for Librilight...") |
|
|
|
save_meta_data(save_dir, processed_dir, distribution2speakers2utts, speakers) |
|
print("Preprocessing subset", subset, "done!") |
|
print("-" * 10) |
|
|
|
|
|
if __name__ == "__main__": |
|
dataset_path = "/path/to/dataset/librilight" |
|
output_path = "/path/to/output" |
|
main(output_path, dataset_path) |
|
|