|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import torchaudio |
|
from tqdm import tqdm |
|
from glob import glob |
|
|
|
from utils.util import has_existed |
|
|
|
|
|
def main(output_path, dataset_path): |
|
print("-" * 10) |
|
print("Dataset splits for ljspeech...\n") |
|
|
|
save_dir = os.path.join(output_path, "ljspeech") |
|
ljspeech_path = dataset_path |
|
|
|
wave_files = glob(ljspeech_path + "/wavs/*.wav") |
|
|
|
train_output_file = os.path.join(save_dir, "train.json") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
|
|
if has_existed(train_output_file): |
|
return |
|
|
|
utts = [] |
|
|
|
for wave_file in tqdm(wave_files): |
|
res = { |
|
"Dataset": "ljspeech", |
|
"Singer": "female1", |
|
"Uid": "{}".format(wave_file.split("/")[-1].split(".")[0]), |
|
} |
|
res["Path"] = wave_file |
|
assert os.path.exists(res["Path"]) |
|
|
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
res["Duration"] = duration |
|
|
|
if duration <= 1e-8: |
|
continue |
|
|
|
utts.append(res) |
|
|
|
test_length = len(utts) // 20 |
|
|
|
train_utts = [] |
|
train_index_count = 0 |
|
train_total_duration = 0 |
|
|
|
for i in tqdm(range(len(utts) - test_length)): |
|
tmp = utts[i] |
|
tmp["index"] = train_index_count |
|
train_index_count += 1 |
|
train_total_duration += tmp["Duration"] |
|
train_utts.append(tmp) |
|
|
|
test_utts = [] |
|
test_index_count = 0 |
|
test_total_duration = 0 |
|
|
|
for i in tqdm(range(len(utts) - test_length, len(utts))): |
|
tmp = utts[i] |
|
tmp["index"] = test_index_count |
|
test_index_count += 1 |
|
test_total_duration += tmp["Duration"] |
|
test_utts.append(tmp) |
|
|
|
print("#Train = {}, #Test = {}".format(len(train_utts), len(test_utts))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
with open(train_output_file, "w") as f: |
|
json.dump(train_utts, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test_utts, f, indent=4, ensure_ascii=False) |
|
|