|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import torchaudio |
|
import librosa |
|
from tqdm import tqdm |
|
from glob import glob |
|
from collections import defaultdict |
|
|
|
from utils.util import has_existed |
|
from preprocessors import GOLDEN_TEST_SAMPLES |
|
|
|
|
|
def get_test_songs(): |
|
golden_samples = GOLDEN_TEST_SAMPLES["popbutfy"] |
|
|
|
golden_songs = [s.split("#")[:2] for s in golden_samples] |
|
|
|
return golden_songs |
|
|
|
|
|
def popbutfy_statistics(data_dir): |
|
singers = [] |
|
songs = [] |
|
singer2songs = defaultdict(lambda: defaultdict(list)) |
|
|
|
data_infos = glob(data_dir + "/*") |
|
|
|
for data_info in data_infos: |
|
data_info_split = data_info.split("/")[-1].split("#") |
|
|
|
singer, song = data_info_split[0], data_info_split[-1] |
|
singers.append(singer) |
|
songs.append(song) |
|
|
|
utts = glob(data_info + "/*") |
|
|
|
for utt in utts: |
|
uid = utt.split("/")[-1].split("_")[-1].split(".")[0] |
|
singer2songs[singer][song].append(uid) |
|
|
|
unique_singers = list(set(singers)) |
|
unique_songs = list(set(songs)) |
|
unique_singers.sort() |
|
unique_songs.sort() |
|
|
|
print( |
|
"PopBuTFy: {} singers, {} utterances ({} unique songs)".format( |
|
len(unique_singers), len(songs), len(unique_songs) |
|
) |
|
) |
|
print("Singers: \n{}".format("\t".join(unique_singers))) |
|
return singer2songs, unique_singers |
|
|
|
|
|
def main(output_path, dataset_path): |
|
print("-" * 10) |
|
print("Preparing test samples for popbutfy...\n") |
|
|
|
save_dir = os.path.join(output_path, "popbutfy") |
|
os.makedirs(save_dir, exist_ok=True) |
|
train_output_file = os.path.join(save_dir, "train.json") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
singer_dict_file = os.path.join(save_dir, "singers.json") |
|
utt2singer_file = os.path.join(save_dir, "utt2singer") |
|
if ( |
|
has_existed(train_output_file) |
|
and has_existed(test_output_file) |
|
and has_existed(singer_dict_file) |
|
and has_existed(utt2singer_file) |
|
): |
|
return |
|
utt2singer = open(utt2singer_file, "w") |
|
|
|
|
|
popbutfy_dir = dataset_path |
|
|
|
singer2songs, unique_singers = popbutfy_statistics(popbutfy_dir) |
|
test_songs = get_test_songs() |
|
|
|
|
|
train = [] |
|
test = [] |
|
|
|
train_index_count = 0 |
|
test_index_count = 0 |
|
|
|
train_total_duration = 0 |
|
test_total_duration = 0 |
|
|
|
for singer, songs in tqdm(singer2songs.items()): |
|
song_names = list(songs.keys()) |
|
|
|
for chosen_song in song_names: |
|
for chosen_uid in songs[chosen_song]: |
|
res = { |
|
"Dataset": "popbutfy", |
|
"Singer": singer, |
|
"Song": chosen_song, |
|
"Uid": "{}#{}#".format(singer, chosen_song, chosen_uid), |
|
} |
|
res["Path"] = "{}#singing#{}/{}#singing#{}_{}.mp3".format( |
|
singer, chosen_song, singer, chosen_song, chosen_uid |
|
) |
|
if not os.path.exists(os.path.join(popbutfy_dir, res["Path"])): |
|
res["Path"] = "{}#singing#{}/{}#singing#{}_{}.wav".format( |
|
singer, chosen_song, singer, chosen_song, chosen_uid |
|
) |
|
res["Path"] = os.path.join(popbutfy_dir, res["Path"]) |
|
assert os.path.exists(res["Path"]) |
|
|
|
if res["Path"].split("/")[-1].split(".")[-1] == "wav": |
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
else: |
|
waveform, sample_rate = librosa.load(res["Path"]) |
|
duration = waveform.shape[-1] / sample_rate |
|
res["Duration"] = duration |
|
|
|
if ([singer, chosen_song]) in test_songs: |
|
res["index"] = test_index_count |
|
test_total_duration += duration |
|
test.append(res) |
|
test_index_count += 1 |
|
else: |
|
res["index"] = train_index_count |
|
train_total_duration += duration |
|
train.append(res) |
|
train_index_count += 1 |
|
|
|
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"])) |
|
|
|
print("#Train = {}, #Test = {}".format(len(train), len(test))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
with open(train_output_file, "w") as f: |
|
json.dump(train, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
|
|
|
|
singer_lut = {name: i for i, name in enumerate(unique_singers)} |
|
with open(singer_dict_file, "w") as f: |
|
json.dump(singer_lut, f, indent=4, ensure_ascii=False) |
|
|