|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import pickle |
|
import glob |
|
from collections import defaultdict |
|
from tqdm import tqdm |
|
from preprocessors import get_golden_samples_indexes |
|
|
|
|
|
TRAIN_MAX_NUM_EVERY_PERSON = 250 |
|
TEST_MAX_NUM_EVERY_PERSON = 25 |
|
|
|
|
|
def select_sample_idxs(): |
|
|
|
with open(os.path.join(vctk_dir, "train.json"), "r") as f: |
|
raw_train = json.load(f) |
|
|
|
train_idxs = [] |
|
train_nums = defaultdict(int) |
|
for utt in tqdm(raw_train): |
|
idx = utt["index"] |
|
singer = utt["Singer"] |
|
|
|
if train_nums[singer] < TRAIN_MAX_NUM_EVERY_PERSON: |
|
train_idxs.append(idx) |
|
train_nums[singer] += 1 |
|
|
|
|
|
with open(os.path.join(vctk_dir, "test.json"), "r") as f: |
|
raw_test = json.load(f) |
|
|
|
|
|
test_idxs = get_golden_samples_indexes( |
|
dataset_name="vctk", split="test", dataset_dir=vctk_dir |
|
) |
|
test_nums = defaultdict(int) |
|
for idx in test_idxs: |
|
singer = raw_test[idx]["Singer"] |
|
test_nums[singer] += 1 |
|
|
|
for utt in tqdm(raw_test): |
|
idx = utt["index"] |
|
singer = utt["Singer"] |
|
|
|
if test_nums[singer] < TEST_MAX_NUM_EVERY_PERSON: |
|
test_idxs.append(idx) |
|
test_nums[singer] += 1 |
|
|
|
train_idxs.sort() |
|
test_idxs.sort() |
|
return train_idxs, test_idxs, raw_train, raw_test |
|
|
|
|
|
if __name__ == "__main__": |
|
root_path = "" |
|
vctk_dir = os.path.join(root_path, "vctk") |
|
sample_dir = os.path.join(root_path, "vctksample") |
|
os.makedirs(sample_dir, exist_ok=True) |
|
|
|
train_idxs, test_idxs, raw_train, raw_test = select_sample_idxs() |
|
print("#Train = {}, #Test = {}".format(len(train_idxs), len(test_idxs))) |
|
|
|
for split, chosen_idxs, utterances in zip( |
|
["train", "test"], [train_idxs, test_idxs], [raw_train, raw_test] |
|
): |
|
print( |
|
"#{} = {}, #chosen idx = {}\n".format( |
|
split, len(utterances), len(chosen_idxs) |
|
) |
|
) |
|
|
|
|
|
feat_files = glob.glob( |
|
"**/{}.pkl".format(split), root_dir=vctk_dir, recursive=True |
|
) |
|
for file in tqdm(feat_files): |
|
raw_file = os.path.join(vctk_dir, file) |
|
new_file = os.path.join(sample_dir, file) |
|
|
|
new_dir = "/".join(new_file.split("/")[:-1]) |
|
os.makedirs(new_dir, exist_ok=True) |
|
|
|
if "mel_min" in file or "mel_max" in file: |
|
os.system("cp {} {}".format(raw_file, new_file)) |
|
continue |
|
|
|
with open(raw_file, "rb") as f: |
|
raw_feats = pickle.load(f) |
|
|
|
print("file: {}, #raw_feats = {}".format(file, len(raw_feats))) |
|
new_feats = [raw_feats[idx] for idx in chosen_idxs] |
|
with open(new_file, "wb") as f: |
|
pickle.dump(new_feats, f) |
|
|
|
|
|
news_utts = [utterances[idx] for idx in chosen_idxs] |
|
for i, utt in enumerate(news_utts): |
|
utt["Dataset"] = "vctksample" |
|
utt["index"] = i |
|
|
|
with open(os.path.join(sample_dir, "{}.json".format(split)), "w") as f: |
|
json.dump(news_utts, f, indent=4) |
|
|