|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import numpy as np |
|
from tqdm import tqdm |
|
import torch |
|
import torchaudio |
|
|
|
from utils.io import save_audio |
|
from utils.audio import load_audio_torch |
|
|
|
|
|
|
|
def get_rms( |
|
y, |
|
*, |
|
frame_length=2048, |
|
hop_length=512, |
|
pad_mode="constant", |
|
): |
|
padding = (int(frame_length // 2), int(frame_length // 2)) |
|
y = np.pad(y, padding, mode=pad_mode) |
|
|
|
axis = -1 |
|
|
|
out_strides = y.strides + tuple([y.strides[axis]]) |
|
|
|
x_shape_trimmed = list(y.shape) |
|
x_shape_trimmed[axis] -= frame_length - 1 |
|
out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) |
|
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides) |
|
if axis < 0: |
|
target_axis = axis - 1 |
|
else: |
|
target_axis = axis + 1 |
|
xw = np.moveaxis(xw, -1, target_axis) |
|
|
|
slices = [slice(None)] * xw.ndim |
|
slices[axis] = slice(0, None, hop_length) |
|
x = xw[tuple(slices)] |
|
|
|
|
|
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) |
|
|
|
return np.sqrt(power) |
|
|
|
|
|
class Slicer: |
|
""" |
|
Copy from: https://github.com/openvpi/audio-slicer/blob/main/slicer2.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
sr: int, |
|
threshold: float = -40.0, |
|
min_length: int = 5000, |
|
min_interval: int = 300, |
|
hop_size: int = 10, |
|
max_sil_kept: int = 5000, |
|
): |
|
if not min_length >= min_interval >= hop_size: |
|
raise ValueError( |
|
"The following condition must be satisfied: min_length >= min_interval >= hop_size" |
|
) |
|
if not max_sil_kept >= hop_size: |
|
raise ValueError( |
|
"The following condition must be satisfied: max_sil_kept >= hop_size" |
|
) |
|
min_interval = sr * min_interval / 1000 |
|
self.threshold = 10 ** (threshold / 20.0) |
|
self.hop_size = round(sr * hop_size / 1000) |
|
self.win_size = min(round(min_interval), 4 * self.hop_size) |
|
self.min_length = round(sr * min_length / 1000 / self.hop_size) |
|
self.min_interval = round(min_interval / self.hop_size) |
|
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) |
|
|
|
def _apply_slice(self, waveform, begin, end): |
|
begin = begin * self.hop_size |
|
if len(waveform.shape) > 1: |
|
end = min(waveform.shape[1], end * self.hop_size) |
|
return waveform[:, begin:end], begin, end |
|
else: |
|
end = min(waveform.shape[0], end * self.hop_size) |
|
return waveform[begin:end], begin, end |
|
|
|
|
|
def slice(self, waveform, return_chunks_positions=False): |
|
if len(waveform.shape) > 1: |
|
|
|
samples = waveform.mean(axis=0) |
|
else: |
|
samples = waveform |
|
if samples.shape[0] <= self.min_length: |
|
return [waveform] |
|
rms_list = get_rms( |
|
y=samples, frame_length=self.win_size, hop_length=self.hop_size |
|
).squeeze(0) |
|
sil_tags = [] |
|
silence_start = None |
|
clip_start = 0 |
|
for i, rms in enumerate(rms_list): |
|
|
|
if rms < self.threshold: |
|
|
|
if silence_start is None: |
|
silence_start = i |
|
continue |
|
|
|
if silence_start is None: |
|
continue |
|
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept |
|
need_slice_middle = ( |
|
i - silence_start >= self.min_interval |
|
and i - clip_start >= self.min_length |
|
) |
|
if not is_leading_silence and not need_slice_middle: |
|
silence_start = None |
|
continue |
|
|
|
if i - silence_start <= self.max_sil_kept: |
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start |
|
if silence_start == 0: |
|
sil_tags.append((0, pos)) |
|
else: |
|
sil_tags.append((pos, pos)) |
|
clip_start = pos |
|
elif i - silence_start <= self.max_sil_kept * 2: |
|
pos = rms_list[ |
|
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1 |
|
].argmin() |
|
pos += i - self.max_sil_kept |
|
pos_l = ( |
|
rms_list[ |
|
silence_start : silence_start + self.max_sil_kept + 1 |
|
].argmin() |
|
+ silence_start |
|
) |
|
pos_r = ( |
|
rms_list[i - self.max_sil_kept : i + 1].argmin() |
|
+ i |
|
- self.max_sil_kept |
|
) |
|
if silence_start == 0: |
|
sil_tags.append((0, pos_r)) |
|
clip_start = pos_r |
|
else: |
|
sil_tags.append((min(pos_l, pos), max(pos_r, pos))) |
|
clip_start = max(pos_r, pos) |
|
else: |
|
pos_l = ( |
|
rms_list[ |
|
silence_start : silence_start + self.max_sil_kept + 1 |
|
].argmin() |
|
+ silence_start |
|
) |
|
pos_r = ( |
|
rms_list[i - self.max_sil_kept : i + 1].argmin() |
|
+ i |
|
- self.max_sil_kept |
|
) |
|
if silence_start == 0: |
|
sil_tags.append((0, pos_r)) |
|
else: |
|
sil_tags.append((pos_l, pos_r)) |
|
clip_start = pos_r |
|
silence_start = None |
|
|
|
total_frames = rms_list.shape[0] |
|
if ( |
|
silence_start is not None |
|
and total_frames - silence_start >= self.min_interval |
|
): |
|
silence_end = min(total_frames, silence_start + self.max_sil_kept) |
|
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start |
|
sil_tags.append((pos, total_frames + 1)) |
|
|
|
if len(sil_tags) == 0: |
|
return [waveform] |
|
else: |
|
chunks = [] |
|
chunks_pos_of_waveform = [] |
|
|
|
if sil_tags[0][0] > 0: |
|
chunk, begin, end = self._apply_slice(waveform, 0, sil_tags[0][0]) |
|
chunks.append(chunk) |
|
chunks_pos_of_waveform.append((begin, end)) |
|
|
|
for i in range(len(sil_tags) - 1): |
|
chunk, begin, end = self._apply_slice( |
|
waveform, sil_tags[i][1], sil_tags[i + 1][0] |
|
) |
|
chunks.append(chunk) |
|
chunks_pos_of_waveform.append((begin, end)) |
|
|
|
if sil_tags[-1][1] < total_frames: |
|
chunk, begin, end = self._apply_slice( |
|
waveform, sil_tags[-1][1], total_frames |
|
) |
|
chunks.append(chunk) |
|
chunks_pos_of_waveform.append((begin, end)) |
|
|
|
return ( |
|
chunks |
|
if not return_chunks_positions |
|
else ( |
|
chunks, |
|
chunks_pos_of_waveform, |
|
) |
|
) |
|
|
|
|
|
def split_utterances_from_audio( |
|
wav_file, |
|
output_dir, |
|
max_duration_of_utterance=10.0, |
|
min_interval=300, |
|
db_threshold=-40, |
|
): |
|
""" |
|
Split a long audio into utterances accoring to the silence (VAD). |
|
|
|
max_duration_of_utterance (second): |
|
The maximum duration of every utterance (seconds) |
|
min_interval (millisecond): |
|
The smaller min_interval is, the more sliced audio clips this script is likely to generate. |
|
""" |
|
print("File:", wav_file.split("/")[-1]) |
|
waveform, fs = torchaudio.load(wav_file) |
|
|
|
slicer = Slicer(sr=fs, min_interval=min_interval, threshold=db_threshold) |
|
chunks, positions = slicer.slice(waveform, return_chunks_positions=True) |
|
|
|
durations = [(end - begin) / fs for begin, end in positions] |
|
print( |
|
"Slicer's min silence part is {}ms, min and max duration of sliced utterances is {}s and {}s".format( |
|
min_interval, min(durations), max(durations) |
|
) |
|
) |
|
|
|
res_chunks, res_positions = [], [] |
|
for i, chunk in enumerate(chunks): |
|
if len(chunk.shape) == 1: |
|
chunk = chunk[None, :] |
|
|
|
begin, end = positions[i] |
|
assert end - begin == chunk.shape[-1] |
|
|
|
max_wav_len = max_duration_of_utterance * fs |
|
if chunk.shape[-1] <= max_wav_len: |
|
res_chunks.append(chunk) |
|
res_positions.append(positions[i]) |
|
else: |
|
|
|
|
|
|
|
number = 2 |
|
while chunk.shape[-1] // number >= max_wav_len: |
|
number += 1 |
|
seg_len = chunk.shape[-1] // number |
|
|
|
|
|
for num in range(number): |
|
s = seg_len * num |
|
t = min(s + seg_len, chunk.shape[-1]) |
|
|
|
seg_begin = begin + s |
|
seg_end = begin + t |
|
|
|
res_chunks.append(chunk[:, s:t]) |
|
res_positions.append((seg_begin, seg_end)) |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
res = {"fs": int(fs)} |
|
for i, chunk in enumerate(res_chunks): |
|
filename = "{:04d}.wav".format(i) |
|
res[filename] = [int(p) for p in res_positions[i]] |
|
save_audio(os.path.join(output_dir, filename), chunk, fs) |
|
|
|
|
|
with open(os.path.join(output_dir, "positions.json"), "w") as f: |
|
json.dump(res, f, indent=4, ensure_ascii=False) |
|
return res |
|
|
|
|
|
def is_silence( |
|
wavform, |
|
fs, |
|
threshold=-40.0, |
|
min_interval=300, |
|
hop_size=10, |
|
min_length=5000, |
|
): |
|
""" |
|
Detect whether the given wavform is a silence |
|
|
|
wavform: (T, ) |
|
""" |
|
threshold = 10 ** (threshold / 20.0) |
|
|
|
hop_size = round(fs * hop_size / 1000) |
|
win_size = min(round(min_interval), 4 * hop_size) |
|
min_length = round(fs * min_length / 1000 / hop_size) |
|
|
|
if wavform.shape[0] <= min_length: |
|
return True |
|
|
|
|
|
rms_array = get_rms(y=wavform, frame_length=win_size, hop_length=hop_size).squeeze( |
|
0 |
|
) |
|
return (rms_array < threshold).all() |
|
|
|
|
|
def split_audio( |
|
wav_file, target_sr, output_dir, max_duration_of_segment=10.0, overlap_duration=1.0 |
|
): |
|
""" |
|
Split a long audio into segments. |
|
|
|
target_sr: |
|
The target sampling rate to save the segments. |
|
max_duration_of_utterance (second): |
|
The maximum duration of every utterance (second) |
|
overlap_duraion: |
|
Each segment has "overlap duration" (second) overlap with its previous and next segment |
|
""" |
|
|
|
waveform, fs = torchaudio.load(wav_file) |
|
waveform = torchaudio.functional.resample( |
|
waveform, orig_freq=fs, new_freq=target_sr |
|
) |
|
waveform = torch.mean(waveform, dim=0) |
|
|
|
|
|
assert len(waveform.shape) == 1 |
|
|
|
assert overlap_duration < max_duration_of_segment |
|
length = int(max_duration_of_segment * target_sr) |
|
stride = int((max_duration_of_segment - overlap_duration) * target_sr) |
|
chunks = [] |
|
for i in range(0, len(waveform), stride): |
|
|
|
chunks.append(waveform[i : i + length]) |
|
if i + length >= len(waveform): |
|
break |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
results = [] |
|
for i, chunk in enumerate(chunks): |
|
uid = "{:04d}".format(i) |
|
filename = os.path.join(output_dir, "{}.wav".format(uid)) |
|
results.append( |
|
{"Uid": uid, "Path": filename, "Duration": len(chunk) / target_sr} |
|
) |
|
save_audio( |
|
filename, |
|
chunk, |
|
target_sr, |
|
turn_up=not is_silence(chunk, target_sr), |
|
add_silence=False, |
|
) |
|
|
|
return results |
|
|
|
|
|
def merge_segments_torchaudio(wav_files, fs, output_path, overlap_duration=1.0): |
|
"""Merge the given wav_files (may have overlaps) into a long audio |
|
|
|
fs: |
|
The sampling rate of the wav files. |
|
output_path: |
|
The output path to save the merged audio. |
|
overlap_duration (float, optional): |
|
Each segment has "overlap duration" (second) overlap with its previous and next segment. Defaults to 1.0. |
|
""" |
|
|
|
waveforms = [] |
|
for file in wav_files: |
|
|
|
waveform, _ = load_audio_torch(file, fs) |
|
waveforms.append(waveform) |
|
|
|
if len(waveforms) == 1: |
|
save_audio(output_path, waveforms[0], fs, add_silence=False, turn_up=False) |
|
return |
|
|
|
overlap_len = int(overlap_duration * fs) |
|
fade_out = torchaudio.transforms.Fade(fade_out_len=overlap_len) |
|
fade_in = torchaudio.transforms.Fade(fade_in_len=overlap_len) |
|
fade_in_and_out = torchaudio.transforms.Fade(fade_out_len=overlap_len) |
|
|
|
segments_lens = [len(wav) for wav in waveforms] |
|
merged_waveform_len = sum(segments_lens) - overlap_len * (len(waveforms) - 1) |
|
merged_waveform = torch.zeros(merged_waveform_len) |
|
|
|
start = 0 |
|
for index, wav in enumerate( |
|
tqdm(waveforms, desc="Merge for {}".format(output_path)) |
|
): |
|
wav_len = len(wav) |
|
|
|
if index == 0: |
|
wav = fade_out(wav) |
|
elif index == len(waveforms) - 1: |
|
wav = fade_in(wav) |
|
else: |
|
wav = fade_in_and_out(wav) |
|
|
|
merged_waveform[start : start + wav_len] = wav |
|
start += wav_len - overlap_len |
|
|
|
save_audio(output_path, merged_waveform, fs, add_silence=False, turn_up=True) |
|
|
|
|
|
def merge_segments_encodec(wav_files, fs, output_path, overlap_duration=1.0): |
|
"""Merge the given wav_files (may have overlaps) into a long audio |
|
|
|
fs: |
|
The sampling rate of the wav files. |
|
output_path: |
|
The output path to save the merged audio. |
|
overlap_duration (float, optional): |
|
Each segment has "overlap duration" (second) overlap with its previous and next segment. Defaults to 1.0. |
|
""" |
|
|
|
waveforms = [] |
|
for file in wav_files: |
|
|
|
waveform, _ = load_audio_torch(file, fs) |
|
waveforms.append(waveform) |
|
|
|
if len(waveforms) == 1: |
|
save_audio(output_path, waveforms[0], fs, add_silence=False, turn_up=False) |
|
return |
|
|
|
device = waveforms[0].device |
|
dtype = waveforms[0].dtype |
|
shape = waveforms[0].shape[:-1] |
|
|
|
overlap_len = int(overlap_duration * fs) |
|
segments_lens = [len(wav) for wav in waveforms] |
|
merged_waveform_len = sum(segments_lens) - overlap_len * (len(waveforms) - 1) |
|
|
|
sum_weight = torch.zeros(merged_waveform_len, device=device, dtype=dtype) |
|
out = torch.zeros(*shape, merged_waveform_len, device=device, dtype=dtype) |
|
offset = 0 |
|
|
|
for frame in waveforms: |
|
frame_length = frame.size(-1) |
|
t = torch.linspace(0, 1, frame_length + 2, device=device, dtype=torch.float32)[ |
|
1:-1 |
|
] |
|
weight = 0.5 - (t - 0.5).abs() |
|
weighted_frame = frame * weight |
|
|
|
cur = out[..., offset : offset + frame_length] |
|
cur += weighted_frame[..., : cur.size(-1)] |
|
out[..., offset : offset + frame_length] = cur |
|
|
|
cur = sum_weight[offset : offset + frame_length] |
|
cur += weight[..., : cur.size(-1)] |
|
sum_weight[offset : offset + frame_length] = cur |
|
|
|
offset += frame_length - overlap_len |
|
|
|
assert sum_weight.min() > 0 |
|
merged_waveform = out / sum_weight |
|
save_audio(output_path, merged_waveform, fs, add_silence=False, turn_up=True) |
|
|