|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from librosa.filters import mel as librosa_mel_fn |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
|
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def spectral_normalize_torch(magnitudes): |
|
output = dynamic_range_compression_torch(magnitudes) |
|
return output |
|
|
|
|
|
def extract_linear_features(y, cfg, center=False): |
|
if torch.min(y) < -1.0: |
|
print("min value is ", torch.min(y)) |
|
if torch.max(y) > 1.0: |
|
print("max value is ", torch.max(y)) |
|
|
|
global hann_window |
|
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) |
|
|
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
|
|
|
|
spec = torch.stft( |
|
y, |
|
cfg.n_fft, |
|
hop_length=cfg.hop_size, |
|
win_length=cfg.win_size, |
|
window=hann_window[str(y.device)], |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=True, |
|
) |
|
spec = torch.view_as_real(spec) |
|
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) |
|
spec = torch.squeeze(spec, 0) |
|
return spec |
|
|
|
|
|
def mel_spectrogram_torch(y, cfg, center=False): |
|
""" |
|
TODO: to merge this funtion with the extract_mel_features below |
|
""" |
|
if torch.min(y) < -1.0: |
|
print("min value is ", torch.min(y)) |
|
if torch.max(y) > 1.0: |
|
print("max value is ", torch.max(y)) |
|
|
|
global mel_basis, hann_window |
|
if cfg.fmax not in mel_basis: |
|
mel = librosa_mel_fn( |
|
sr=cfg.sample_rate, |
|
n_fft=cfg.n_fft, |
|
n_mels=cfg.n_mel, |
|
fmin=cfg.fmin, |
|
fmax=cfg.fmax, |
|
) |
|
mel_basis[str(cfg.fmax) + "_" + str(y.device)] = ( |
|
torch.from_numpy(mel).float().to(y.device) |
|
) |
|
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) |
|
|
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
|
|
spec = torch.stft( |
|
y, |
|
cfg.n_fft, |
|
hop_length=cfg.hop_size, |
|
win_length=cfg.win_size, |
|
window=hann_window[str(y.device)], |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=True, |
|
) |
|
|
|
spec = torch.view_as_real(spec) |
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) |
|
|
|
spec = torch.matmul(mel_basis[str(cfg.fmax) + "_" + str(y.device)], spec) |
|
spec = spectral_normalize_torch(spec) |
|
|
|
return spec |
|
|
|
|
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
|
|
def extract_mel_features( |
|
y, |
|
cfg, |
|
center=False, |
|
): |
|
"""Extract mel features |
|
|
|
Args: |
|
y (tensor): audio data in tensor |
|
cfg (dict): configuration in cfg.preprocess |
|
center (bool, optional): In STFT, whether t-th frame is centered at time t*hop_length. Defaults to False. |
|
|
|
Returns: |
|
tensor: a tensor containing the mel feature calculated based on STFT result |
|
""" |
|
if torch.min(y) < -1.0: |
|
print("min value is ", torch.min(y)) |
|
if torch.max(y) > 1.0: |
|
print("max value is ", torch.max(y)) |
|
|
|
global mel_basis, hann_window |
|
if cfg.fmax not in mel_basis: |
|
mel = librosa_mel_fn( |
|
sr=cfg.sample_rate, |
|
n_fft=cfg.n_fft, |
|
n_mels=cfg.n_mel, |
|
fmin=cfg.fmin, |
|
fmax=cfg.fmax, |
|
) |
|
mel_basis[str(cfg.fmax) + "_" + str(y.device)] = ( |
|
torch.from_numpy(mel).float().to(y.device) |
|
) |
|
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) |
|
|
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
|
|
|
|
spec = torch.stft( |
|
y, |
|
cfg.n_fft, |
|
hop_length=cfg.hop_size, |
|
win_length=cfg.win_size, |
|
window=hann_window[str(y.device)], |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=True, |
|
) |
|
spec = torch.view_as_real(spec) |
|
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) |
|
|
|
spec = torch.matmul(mel_basis[str(cfg.fmax) + "_" + str(y.device)], spec) |
|
spec = spectral_normalize_torch(spec) |
|
return spec.squeeze(0) |
|
|
|
|
|
def extract_mel_features_tts( |
|
y, |
|
cfg, |
|
center=False, |
|
taco=False, |
|
_stft=None, |
|
): |
|
"""Extract mel features |
|
|
|
Args: |
|
y (tensor): audio data in tensor |
|
cfg (dict): configuration in cfg.preprocess |
|
center (bool, optional): In STFT, whether t-th frame is centered at time t*hop_length. Defaults to False. |
|
taco: use tacotron mel |
|
|
|
Returns: |
|
tensor: a tensor containing the mel feature calculated based on STFT result |
|
""" |
|
if not taco: |
|
if torch.min(y) < -1.0: |
|
print("min value is ", torch.min(y)) |
|
if torch.max(y) > 1.0: |
|
print("max value is ", torch.max(y)) |
|
|
|
global mel_basis, hann_window |
|
if cfg.fmax not in mel_basis: |
|
mel = librosa_mel_fn( |
|
sr=cfg.sample_rate, |
|
n_fft=cfg.n_fft, |
|
n_mels=cfg.n_mel, |
|
fmin=cfg.fmin, |
|
fmax=cfg.fmax, |
|
) |
|
mel_basis[str(cfg.fmax) + "_" + str(y.device)] = ( |
|
torch.from_numpy(mel).float().to(y.device) |
|
) |
|
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) |
|
|
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
|
|
|
|
spec = torch.stft( |
|
y, |
|
cfg.n_fft, |
|
hop_length=cfg.hop_size, |
|
win_length=cfg.win_size, |
|
window=hann_window[str(y.device)], |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=True, |
|
) |
|
spec = torch.view_as_real(spec) |
|
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) |
|
|
|
spec = torch.matmul(mel_basis[str(cfg.fmax) + "_" + str(y.device)], spec) |
|
spec = spectral_normalize_torch(spec) |
|
else: |
|
audio = torch.clip(y, -1, 1) |
|
audio = torch.autograd.Variable(audio, requires_grad=False) |
|
spec, energy = _stft.mel_spectrogram(audio) |
|
|
|
return spec.squeeze(0) |
|
|
|
|
|
def amplitude_phase_spectrum(y, cfg): |
|
hann_window = torch.hann_window(cfg.win_size).to(y.device) |
|
|
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), |
|
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), |
|
mode="reflect", |
|
) |
|
y = y.squeeze(1) |
|
|
|
stft_spec = torch.stft( |
|
y, |
|
cfg.n_fft, |
|
hop_length=cfg.hop_size, |
|
win_length=cfg.win_size, |
|
window=hann_window, |
|
center=False, |
|
return_complex=True, |
|
) |
|
|
|
stft_spec = torch.view_as_real(stft_spec) |
|
if stft_spec.size()[0] == 1: |
|
stft_spec = stft_spec.squeeze(0) |
|
|
|
if len(list(stft_spec.size())) == 4: |
|
rea = stft_spec[:, :, :, 0] |
|
imag = stft_spec[:, :, :, 1] |
|
else: |
|
rea = stft_spec[:, :, 0] |
|
imag = stft_spec[:, :, 1] |
|
|
|
log_amplitude = torch.log( |
|
torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5 |
|
) |
|
phase = torch.atan2(imag, rea) |
|
|
|
return log_amplitude, phase, rea, imag |
|
|