|
|
|
|
|
|
|
|
|
|
|
import humanfriendly |
|
import numpy as np |
|
import torch |
|
|
|
|
|
def get_human_readable_count(number: int) -> str: |
|
"""Return human_readable_count |
|
|
|
Originated from: |
|
https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/core/memory.py |
|
|
|
Abbreviates an integer number with K, M, B, T for thousands, millions, |
|
billions and trillions, respectively. |
|
Examples: |
|
>>> get_human_readable_count(123) |
|
'123 ' |
|
>>> get_human_readable_count(1234) # (one thousand) |
|
'1 K' |
|
>>> get_human_readable_count(2e6) # (two million) |
|
'2 M' |
|
>>> get_human_readable_count(3e9) # (three billion) |
|
'3 B' |
|
>>> get_human_readable_count(4e12) # (four trillion) |
|
'4 T' |
|
>>> get_human_readable_count(5e15) # (more than trillion) |
|
'5,000 T' |
|
Args: |
|
number: a positive integer number |
|
Return: |
|
A string formatted according to the pattern described above. |
|
""" |
|
assert number >= 0 |
|
labels = [" ", "K", "M", "B", "T"] |
|
num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1) |
|
num_groups = int(np.ceil(num_digits / 3)) |
|
num_groups = min(num_groups, len(labels)) |
|
shift = -3 * (num_groups - 1) |
|
number = number * (10**shift) |
|
index = num_groups - 1 |
|
return f"{number:.2f} {labels[index]}" |
|
|
|
|
|
def to_bytes(dtype) -> int: |
|
return int(str(dtype)[-2:]) // 8 |
|
|
|
|
|
def model_summary(model: torch.nn.Module) -> str: |
|
message = "Model structure:\n" |
|
message += str(model) |
|
tot_params = sum(p.numel() for p in model.parameters()) |
|
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
percent_trainable = "{:.1f}".format(num_params * 100.0 / tot_params) |
|
tot_params = get_human_readable_count(tot_params) |
|
num_params = get_human_readable_count(num_params) |
|
message += "\n\nModel summary:\n" |
|
message += f" Class Name: {model.__class__.__name__}\n" |
|
message += f" Total Number of model parameters: {tot_params}\n" |
|
message += ( |
|
f" Number of trainable parameters: {num_params} ({percent_trainable}%)\n" |
|
) |
|
num_bytes = humanfriendly.format_size( |
|
sum( |
|
p.numel() * to_bytes(p.dtype) for p in model.parameters() if p.requires_grad |
|
) |
|
) |
|
message += f" Size: {num_bytes}\n" |
|
dtype = next(iter(model.parameters())).dtype |
|
message += f" Type: {dtype}" |
|
return message |
|
|