|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
from torch.nn.utils import weight_norm |
|
|
|
|
|
def WNConv1d(*args, **kwargs): |
|
return weight_norm(nn.Conv1d(*args, **kwargs)) |
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs): |
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) |
|
|
|
|
|
def l2norm(t): |
|
return F.normalize(t, p=2, dim=-1) |
|
|
|
|
|
def ema_inplace(moving_avg, new, decay): |
|
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) |
|
|
|
|
|
def laplace_smoothing(x, n_categories, eps=1e-5): |
|
return (x + eps) / (x.sum() + n_categories * eps) |
|
|
|
|
|
def sample_vectors(samples, num): |
|
num_samples, device = samples.shape[0], samples.device |
|
|
|
if num_samples >= num: |
|
indices = torch.randperm(num_samples, device=device)[:num] |
|
else: |
|
indices = torch.randint(0, num_samples, (num,), device=device) |
|
|
|
return samples[indices] |
|
|
|
|
|
def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False): |
|
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device |
|
|
|
means = sample_vectors(samples, num_clusters) |
|
|
|
for _ in range(num_iters): |
|
if use_cosine_sim: |
|
dists = samples @ means.t() |
|
else: |
|
diffs = rearrange(samples, "n d -> n () d") - rearrange( |
|
means, "c d -> () c d" |
|
) |
|
dists = -(diffs**2).sum(dim=-1) |
|
|
|
buckets = dists.max(dim=-1).indices |
|
bins = torch.bincount(buckets, minlength=num_clusters) |
|
zero_mask = bins == 0 |
|
bins_min_clamped = bins.masked_fill(zero_mask, 1) |
|
|
|
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) |
|
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) |
|
new_means = new_means / bins_min_clamped[..., None] |
|
|
|
if use_cosine_sim: |
|
new_means = l2norm(new_means) |
|
|
|
means = torch.where(zero_mask[..., None], means, new_means) |
|
|
|
return means, bins |
|
|
|
|
|
class EuclideanCodebook(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
codebook_size, |
|
kmeans_init=False, |
|
kmeans_iters=10, |
|
decay=0.8, |
|
eps=1e-5, |
|
threshold_ema_dead_code=2, |
|
weight_init=False, |
|
): |
|
super().__init__() |
|
|
|
self.decay = decay |
|
init_fn = torch.randn if not weight_init else torch.zeros |
|
embed = init_fn(codebook_size, dim) |
|
|
|
if weight_init: |
|
nn.init.uniform_(embed, -1 / codebook_size, 1 / codebook_size) |
|
|
|
self.codebook_size = codebook_size |
|
self.kmeans_iters = kmeans_iters |
|
self.eps = eps |
|
self.threshold_ema_dead_code = threshold_ema_dead_code |
|
|
|
self.register_buffer( |
|
"initted", torch.Tensor([not kmeans_init]) |
|
) |
|
self.register_buffer("cluster_size", torch.zeros(codebook_size)) |
|
self.register_buffer("embed", embed) |
|
self.register_buffer("embed_avg", embed.clone()) |
|
|
|
def init_embed_(self, data): |
|
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) |
|
self.embed.data.copy_(embed) |
|
self.embed_avg.data.copy_(embed) |
|
self.cluster_size.data.copy_(cluster_size) |
|
self.initted.data.copy_(torch.Tensor([True])) |
|
|
|
def replace(self, samples, mask): |
|
modified_codebook = torch.where( |
|
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed |
|
) |
|
self.embed.data.copy_(modified_codebook) |
|
|
|
def expire_codes_(self, batch_samples): |
|
if self.threshold_ema_dead_code == 0: |
|
return |
|
|
|
expired_codes = self.cluster_size < self.threshold_ema_dead_code |
|
if not torch.any(expired_codes): |
|
return |
|
batch_samples = rearrange(batch_samples, "... d -> (...) d") |
|
self.replace(batch_samples, mask=expired_codes) |
|
|
|
def forward(self, x): |
|
shape, dtype = x.shape, x.dtype |
|
flatten = rearrange(x, "... d -> (...) d") |
|
embed = self.embed.t() |
|
|
|
if not self.initted: |
|
self.init_embed_(flatten) |
|
|
|
dist = -( |
|
flatten.pow(2).sum(1, keepdim=True) |
|
- 2 * flatten @ embed |
|
+ embed.pow(2).sum(0, keepdim=True) |
|
) |
|
|
|
embed_ind = dist.max(dim=-1).indices |
|
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) |
|
embed_ind = embed_ind.view(*shape[:-1]) |
|
quantize = F.embedding(embed_ind, self.embed) |
|
|
|
if self.training: |
|
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) |
|
embed_sum = ( |
|
flatten.t() @ embed_onehot |
|
) |
|
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) |
|
cluster_size = ( |
|
laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) |
|
* self.cluster_size.sum() |
|
) |
|
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) |
|
self.embed.data.copy_(embed_normalized) |
|
self.expire_codes_(x) |
|
|
|
return quantize, embed_ind |
|
|
|
def vq2emb(self, vq): |
|
quantize = F.embedding(vq, self.embed) |
|
return quantize |
|
|
|
def latent2dist(self, x): |
|
shape, dtype = x.shape, x.dtype |
|
flatten = rearrange(x, "... d -> (...) d") |
|
embed = self.embed.t() |
|
|
|
if not self.initted: |
|
self.init_embed_(flatten) |
|
|
|
dist = -( |
|
flatten.pow(2).sum(1, keepdim=True) |
|
- 2 * flatten @ embed |
|
+ embed.pow(2).sum(0, keepdim=True) |
|
) |
|
|
|
embed_ind = dist.max(dim=-1).indices |
|
embed_ind = embed_ind.view(*shape[:-1]) |
|
quantize = F.embedding(embed_ind, self.embed) |
|
|
|
dist = dist.view(*shape[:-1], -1) |
|
|
|
return dist, embed_ind, quantize |
|
|
|
|
|
class SimpleCodebook(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
codebook_size, |
|
use_l2_normlize=False, |
|
): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.codebook_size = codebook_size |
|
self.use_l2_normlize = use_l2_normlize |
|
|
|
self.embed = nn.Embedding(self.codebook_size, self.dim) |
|
|
|
def forward(self, x): |
|
shape, dtype = x.shape, x.dtype |
|
flatten = rearrange(x, "... d -> (...) d") |
|
embed = self.embed.weight.t() |
|
|
|
if self.use_l2_normlize: |
|
flatten = F.normalize(flatten) |
|
embed = F.normalize(embed) |
|
|
|
dist = -( |
|
flatten.pow(2).sum(1, keepdim=True) |
|
- 2 * flatten @ embed |
|
+ embed.pow(2).sum(0, keepdim=True) |
|
) |
|
|
|
embed_ind = dist.max(dim=-1).indices |
|
embed_ind = embed_ind.view(*shape[:-1]) |
|
quantize = F.embedding(embed_ind, self.embed) |
|
|
|
return quantize, embed_ind |
|
|
|
def vq2emb(self, vq): |
|
quantize = F.embedding(vq, self.embed.weight) |
|
return quantize |
|
|
|
def latent2dist(self, x): |
|
shape, dtype = x.shape, x.dtype |
|
flatten = rearrange(x, "... d -> (...) d") |
|
embed = self.embed.weight.t() |
|
|
|
if self.use_l2_normlize: |
|
flatten = F.normalize(flatten) |
|
embed = F.normalize(embed) |
|
|
|
dist = -( |
|
flatten.pow(2).sum(1, keepdim=True) |
|
- 2 * flatten @ embed |
|
+ embed.pow(2).sum(0, keepdim=True) |
|
) |
|
|
|
embed_ind = dist.max(dim=-1).indices |
|
embed_ind = embed_ind.view(*shape[:-1]) |
|
quantize = F.embedding(embed_ind, self.embed) |
|
|
|
dist = dist.view(*shape[:-1], -1) |
|
|
|
return dist, embed_ind, quantize |
|
|
|
|
|
class VectorQuantize(nn.Module): |
|
"""Vector quantization and factorized vecotor quantization implementation |
|
Args: |
|
input_dim (int): Dimension of input. |
|
codebook_size (int): Codebook size. |
|
codebook_dim (int): Codebook dimension. We suggest use codebook_dim = input_dim |
|
if use codebook_type == "euclidean", otherwise, if you want to use |
|
factorized vector quantization, use codebook_dim as small number (e.g. 8 or 32). |
|
commitment (float): Weight for commitment loss. |
|
use_l2_normlize (bool): Whether to use l2 normlized codes for factorized vecotor quantization, |
|
we suggest use it as True if you want to use factorized vector quantization |
|
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. |
|
kmeans_iters (int): Number of iterations used for kmeans initialization. |
|
decay (float): Decay for exponential moving average over the codebooks. |
|
epsilon (float): Epsilon value for numerical stability. |
|
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes |
|
that have an exponential moving average cluster size less than the specified threshold with |
|
randomly selected vector from the current batch. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_dim, |
|
codebook_size, |
|
codebook_dim, |
|
commitment=0.005, |
|
codebook_loss_weight=1.0, |
|
use_l2_normlize=False, |
|
codebook_type="euclidean", |
|
kmeans_init=False, |
|
kmeans_iters=10, |
|
decay=0.8, |
|
eps=1e-5, |
|
threshold_ema_dead_code=2, |
|
weight_init=False, |
|
): |
|
super().__init__() |
|
self.input_dim = input_dim |
|
self.codebook_size = codebook_size |
|
self.codebook_dim = codebook_dim |
|
self.commitment = commitment |
|
self.codebook_loss_weight = codebook_loss_weight |
|
self.use_l2_normlize = use_l2_normlize |
|
self.codebook_type = codebook_type |
|
self.kmeans_init = kmeans_init |
|
self.kmeans_iters = kmeans_iters |
|
self.decay = decay |
|
self.eps = eps |
|
self.threshold_ema_dead_code = threshold_ema_dead_code |
|
self.weight_init = weight_init |
|
|
|
if self.input_dim != self.codebook_dim: |
|
self.in_project = WNConv1d(self.input_dim, self.codebook_dim, kernel_size=1) |
|
self.out_project = WNConv1d( |
|
self.codebook_dim, self.input_dim, kernel_size=1 |
|
) |
|
|
|
else: |
|
self.in_project = nn.Identity() |
|
self.out_project = nn.Identity() |
|
|
|
if self.codebook_type == "euclidean": |
|
self.codebook = EuclideanCodebook( |
|
self.codebook_dim, |
|
codebook_size=self.codebook_size, |
|
kmeans_init=self.kmeans_init, |
|
kmeans_iters=self.kmeans_iters, |
|
decay=self.decay, |
|
eps=self.eps, |
|
threshold_ema_dead_code=self.threshold_ema_dead_code, |
|
weight_init=self.weight_init, |
|
) |
|
elif self.codebook_type == "simple": |
|
self.codebook = SimpleCodebook( |
|
self.codebook_dim, |
|
codebook_size=self.codebook_size, |
|
use_l2_normlize=self.use_l2_normlize, |
|
) |
|
else: |
|
raise NotImplementedError( |
|
f"codebook_type {self.codebook_type} is not implemented!" |
|
) |
|
|
|
def forward(self, z): |
|
""" |
|
Parameters |
|
---------- |
|
z: torch.Tensor[B x D x T] |
|
|
|
Returns |
|
------- |
|
z_q: torch.Tensor[B x D x T] |
|
Quantized continuous representation of input |
|
commit_loss: Tensor[B] |
|
Commitment loss to train encoder to predict vectors closer to codebook entries |
|
codebook_loss: Tensor[B] |
|
Codebook loss to update the codebook |
|
indices: torch.Tensor[B x T] |
|
Codebook indices (quantized discrete representation of input) |
|
z_e: torch.Tensor[B x D x T] |
|
Projected latents (continuous representation of input before quantization) |
|
""" |
|
|
|
|
|
z_e = self.in_project(z) |
|
z_q, indices = self.decode_latents(z_e) |
|
|
|
|
|
if self.training: |
|
commit_loss = ( |
|
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) |
|
* self.commitment |
|
) |
|
codebook_loss = ( |
|
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2]) |
|
* self.codebook_loss_weight |
|
) |
|
else: |
|
commit_loss = torch.zeros(z.shape[0], device=z.device) |
|
codebook_loss = torch.zeros(z.shape[0], device=z.device) |
|
|
|
z_q = z_e + (z_q - z_e).detach() |
|
|
|
z_q = self.out_project(z_q) |
|
|
|
return z_q, commit_loss, codebook_loss, indices, z_e |
|
|
|
def decode_latents(self, latents): |
|
encodings = rearrange(latents, "b d t -> b t d") |
|
z_q, indices = self.codebook(encodings) |
|
z_q = z_q.transpose(1, 2) |
|
return z_q, indices |
|
|
|
def vq2emb(self, vq, out_proj=True): |
|
emb = self.codebook.vq2emb(vq) |
|
emb = emb.transpose(1, 2) |
|
if out_proj: |
|
emb = self.out_project(emb) |
|
return emb |
|
|
|
def latent2dist(self, latents): |
|
latents = rearrange(latents, "b d t -> b t d") |
|
dist, embed_ind, quantize = self.codebook.latent2dist(latents) |
|
return dist, embed_ind, quantize.transpose(1, 2) |
|
|