|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import numpy as np |
|
import torch.nn as nn |
|
from utils.util import convert_pad_shape |
|
|
|
|
|
class BaseModule(torch.nn.Module): |
|
def __init__(self): |
|
super(BaseModule, self).__init__() |
|
|
|
@property |
|
def nparams(self): |
|
""" |
|
Returns number of trainable parameters of the module. |
|
""" |
|
num_params = 0 |
|
for name, param in self.named_parameters(): |
|
if param.requires_grad: |
|
num_params += np.prod(param.detach().cpu().numpy().shape) |
|
return num_params |
|
|
|
def relocate_input(self, x: list): |
|
""" |
|
Relocates provided tensors to the same device set for the module. |
|
""" |
|
device = next(self.parameters()).device |
|
for i in range(len(x)): |
|
if isinstance(x[i], torch.Tensor) and x[i].device != device: |
|
x[i] = x[i].to(device) |
|
return x |
|
|
|
|
|
class LayerNorm(BaseModule): |
|
def __init__(self, channels, eps=1e-4): |
|
super(LayerNorm, self).__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = torch.nn.Parameter(torch.ones(channels)) |
|
self.beta = torch.nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
n_dims = len(x.shape) |
|
mean = torch.mean(x, 1, keepdim=True) |
|
variance = torch.mean((x - mean) ** 2, 1, keepdim=True) |
|
|
|
x = (x - mean) * torch.rsqrt(variance + self.eps) |
|
|
|
shape = [1, -1] + [1] * (n_dims - 2) |
|
x = x * self.gamma.view(*shape) + self.beta.view(*shape) |
|
return x |
|
|
|
|
|
class ConvReluNorm(BaseModule): |
|
def __init__( |
|
self, |
|
in_channels, |
|
hidden_channels, |
|
out_channels, |
|
kernel_size, |
|
n_layers, |
|
p_dropout, |
|
eps=1e-5, |
|
): |
|
super(ConvReluNorm, self).__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
self.eps = eps |
|
|
|
self.conv_layers = torch.nn.ModuleList() |
|
self.conv_layers.append( |
|
torch.nn.Conv1d( |
|
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 |
|
) |
|
) |
|
self.relu_drop = torch.nn.Sequential( |
|
torch.nn.ReLU(), torch.nn.Dropout(p_dropout) |
|
) |
|
for _ in range(n_layers - 1): |
|
self.conv_layers.append( |
|
torch.nn.Conv1d( |
|
hidden_channels, |
|
hidden_channels, |
|
kernel_size, |
|
padding=kernel_size // 2, |
|
) |
|
) |
|
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1) |
|
self.proj.weight.data.zero_() |
|
self.proj.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask): |
|
for i in range(self.n_layers): |
|
x = self.conv_layers[i](x * x_mask) |
|
x = self.instance_norm(x, x_mask) |
|
x = self.relu_drop(x) |
|
x = self.proj(x) |
|
return x * x_mask |
|
|
|
def instance_norm(self, x, mask, return_mean_std=False): |
|
mean, std = self.calc_mean_std(x, mask) |
|
x = (x - mean) / std |
|
if return_mean_std: |
|
return x, mean, std |
|
else: |
|
return x |
|
|
|
def calc_mean_std(self, x, mask=None): |
|
x = x * mask |
|
B, C = x.shape[:2] |
|
mn = x.view(B, C, -1).mean(-1) |
|
sd = (x.view(B, C, -1).var(-1) + self.eps).sqrt() |
|
mn = mn.view(B, C, *((len(x.shape) - 2) * [1])) |
|
sd = sd.view(B, C, *((len(x.shape) - 2) * [1])) |
|
return mn, sd |
|
|
|
|
|
class MultiHeadAttention(BaseModule): |
|
def __init__( |
|
self, |
|
channels, |
|
out_channels, |
|
n_heads, |
|
window_size=None, |
|
heads_share=True, |
|
p_dropout=0.0, |
|
proximal_bias=False, |
|
proximal_init=False, |
|
): |
|
super(MultiHeadAttention, self).__init__() |
|
assert channels % n_heads == 0 |
|
|
|
self.channels = channels |
|
self.out_channels = out_channels |
|
self.n_heads = n_heads |
|
self.window_size = window_size |
|
self.heads_share = heads_share |
|
self.proximal_bias = proximal_bias |
|
self.p_dropout = p_dropout |
|
self.attn = None |
|
|
|
self.k_channels = channels // n_heads |
|
self.conv_q = torch.nn.Conv1d(channels, channels, 1) |
|
self.conv_k = torch.nn.Conv1d(channels, channels, 1) |
|
self.conv_v = torch.nn.Conv1d(channels, channels, 1) |
|
if window_size is not None: |
|
n_heads_rel = 1 if heads_share else n_heads |
|
rel_stddev = self.k_channels**-0.5 |
|
self.emb_rel_k = torch.nn.Parameter( |
|
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) |
|
* rel_stddev |
|
) |
|
self.emb_rel_v = torch.nn.Parameter( |
|
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) |
|
* rel_stddev |
|
) |
|
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1) |
|
self.drop = torch.nn.Dropout(p_dropout) |
|
|
|
torch.nn.init.xavier_uniform_(self.conv_q.weight) |
|
torch.nn.init.xavier_uniform_(self.conv_k.weight) |
|
if proximal_init: |
|
self.conv_k.weight.data.copy_(self.conv_q.weight.data) |
|
self.conv_k.bias.data.copy_(self.conv_q.bias.data) |
|
torch.nn.init.xavier_uniform_(self.conv_v.weight) |
|
|
|
def forward(self, x, c, attn_mask=None): |
|
q = self.conv_q(x) |
|
k = self.conv_k(c) |
|
v = self.conv_v(c) |
|
|
|
x, self.attn = self.attention(q, k, v, mask=attn_mask) |
|
|
|
x = self.conv_o(x) |
|
return x |
|
|
|
def attention(self, query, key, value, mask=None): |
|
b, d, t_s, t_t = (*key.size(), query.size(2)) |
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) |
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
|
|
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) |
|
if self.window_size is not None: |
|
assert ( |
|
t_s == t_t |
|
), "Relative attention is only available for self-attention." |
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) |
|
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) |
|
rel_logits = self._relative_position_to_absolute_position(rel_logits) |
|
scores_local = rel_logits / math.sqrt(self.k_channels) |
|
scores = scores + scores_local |
|
if self.proximal_bias: |
|
assert t_s == t_t, "Proximal bias is only available for self-attention." |
|
scores = scores + self._attention_bias_proximal(t_s).to( |
|
device=scores.device, dtype=scores.dtype |
|
) |
|
if mask is not None: |
|
scores = scores.masked_fill(mask == 0, -1e4) |
|
p_attn = torch.nn.functional.softmax(scores, dim=-1) |
|
p_attn = self.drop(p_attn) |
|
output = torch.matmul(p_attn, value) |
|
if self.window_size is not None: |
|
relative_weights = self._absolute_position_to_relative_position(p_attn) |
|
value_relative_embeddings = self._get_relative_embeddings( |
|
self.emb_rel_v, t_s |
|
) |
|
output = output + self._matmul_with_relative_values( |
|
relative_weights, value_relative_embeddings |
|
) |
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t) |
|
return output, p_attn |
|
|
|
def _matmul_with_relative_values(self, x, y): |
|
ret = torch.matmul(x, y.unsqueeze(0)) |
|
return ret |
|
|
|
def _matmul_with_relative_keys(self, x, y): |
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) |
|
return ret |
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length): |
|
pad_length = max(length - (self.window_size + 1), 0) |
|
slice_start_position = max((self.window_size + 1) - length, 0) |
|
slice_end_position = slice_start_position + 2 * length - 1 |
|
if pad_length > 0: |
|
padded_relative_embeddings = torch.nn.functional.pad( |
|
relative_embeddings, |
|
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), |
|
) |
|
else: |
|
padded_relative_embeddings = relative_embeddings |
|
used_relative_embeddings = padded_relative_embeddings[ |
|
:, slice_start_position:slice_end_position |
|
] |
|
return used_relative_embeddings |
|
|
|
def _relative_position_to_absolute_position(self, x): |
|
batch, heads, length, _ = x.size() |
|
x = torch.nn.functional.pad( |
|
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]) |
|
) |
|
x_flat = x.view([batch, heads, length * 2 * length]) |
|
x_flat = torch.nn.functional.pad( |
|
x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) |
|
) |
|
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[ |
|
:, :, :length, length - 1 : |
|
] |
|
return x_final |
|
|
|
def _absolute_position_to_relative_position(self, x): |
|
batch, heads, length, _ = x.size() |
|
x = torch.nn.functional.pad( |
|
x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) |
|
) |
|
x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) |
|
x_flat = torch.nn.functional.pad( |
|
x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]) |
|
) |
|
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] |
|
return x_final |
|
|
|
def _attention_bias_proximal(self, length): |
|
r = torch.arange(length, dtype=torch.float32) |
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) |
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) |
|
|
|
|
|
class FFN(BaseModule): |
|
def __init__( |
|
self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0 |
|
): |
|
super(FFN, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.filter_channels = filter_channels |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
|
|
self.conv_1 = torch.nn.Conv1d( |
|
in_channels, filter_channels, kernel_size, padding=kernel_size // 2 |
|
) |
|
self.conv_2 = torch.nn.Conv1d( |
|
filter_channels, out_channels, kernel_size, padding=kernel_size // 2 |
|
) |
|
self.drop = torch.nn.Dropout(p_dropout) |
|
|
|
def forward(self, x, x_mask): |
|
x = self.conv_1(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.drop(x) |
|
x = self.conv_2(x * x_mask) |
|
return x * x_mask |
|
|
|
|
|
class Encoder(BaseModule): |
|
def __init__( |
|
self, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads=2, |
|
n_layers=6, |
|
kernel_size=3, |
|
p_dropout=0.1, |
|
window_size=4, |
|
**kwargs |
|
): |
|
super(Encoder, self).__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
|
|
self.drop = torch.nn.Dropout(p_dropout) |
|
self.attn_layers = torch.nn.ModuleList() |
|
self.norm_layers_1 = torch.nn.ModuleList() |
|
self.ffn_layers = torch.nn.ModuleList() |
|
self.norm_layers_2 = torch.nn.ModuleList() |
|
for _ in range(self.n_layers): |
|
self.attn_layers.append( |
|
MultiHeadAttention( |
|
hidden_channels, |
|
hidden_channels, |
|
n_heads, |
|
window_size=window_size, |
|
p_dropout=p_dropout, |
|
) |
|
) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append( |
|
FFN( |
|
hidden_channels, |
|
hidden_channels, |
|
filter_channels, |
|
kernel_size, |
|
p_dropout=p_dropout, |
|
) |
|
) |
|
self.norm_layers_2.append(LayerNorm(hidden_channels)) |
|
|
|
def forward(self, x, x_mask): |
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) |
|
for i in range(self.n_layers): |
|
x = x * x_mask |
|
y = self.attn_layers[i](x, x, attn_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_1[i](x + y) |
|
y = self.ffn_layers[i](x, x_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_2[i](x + y) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
class Conformer(BaseModule): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.cfg = cfg |
|
self.n_heads = self.cfg.n_heads |
|
self.n_layers = self.cfg.n_layers |
|
self.hidden_channels = self.cfg.input_dim |
|
self.filter_channels = self.cfg.filter_channels |
|
self.output_dim = self.cfg.output_dim |
|
self.dropout = self.cfg.dropout |
|
|
|
self.conformer_encoder = Encoder( |
|
self.hidden_channels, |
|
self.filter_channels, |
|
n_heads=self.n_heads, |
|
n_layers=self.n_layers, |
|
kernel_size=3, |
|
p_dropout=self.dropout, |
|
window_size=4, |
|
) |
|
self.projection = nn.Conv1d(self.hidden_channels, self.output_dim, 1) |
|
|
|
def forward(self, x, x_mask): |
|
""" |
|
Args: |
|
x: (N, seq_len, input_dim) |
|
Returns: |
|
output: (N, seq_len, output_dim) |
|
""" |
|
|
|
x = x.transpose(1, 2) |
|
x_mask = x_mask.transpose(1, 2) |
|
output = self.conformer_encoder(x, x_mask) |
|
|
|
output = self.projection(output) |
|
output = output.transpose(1, 2) |
|
return output |
|
|