|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from utils.util import pad_mels_to_tensors, pad_f0_to_tensors |
|
|
|
|
|
def vocoder_inference(cfg, model, mels, f0s=None, device=None, fast_inference=False): |
|
"""Inference the vocoder |
|
Args: |
|
mels: A tensor of mel-specs with the shape (batch_size, num_mels, frames) |
|
Returns: |
|
audios: A tensor of audios with the shape (batch_size, seq_len) |
|
""" |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
mels = mels.to(device) |
|
if f0s != None: |
|
f0s = f0s.to(device) |
|
|
|
if f0s == None and not cfg.preprocess.extract_amplitude_phase: |
|
output = model.forward(mels) |
|
elif cfg.preprocess.extract_amplitude_phase: |
|
( |
|
_, |
|
_, |
|
_, |
|
_, |
|
output, |
|
) = model.forward(mels) |
|
else: |
|
output = model.forward(mels, f0s) |
|
|
|
return output.squeeze(1).detach().cpu() |
|
|
|
|
|
def synthesis_audios(cfg, model, mels, f0s=None, batch_size=None, fast_inference=False): |
|
"""Inference the vocoder |
|
Args: |
|
mels: A list of mel-specs |
|
Returns: |
|
audios: A list of audios |
|
""" |
|
|
|
device = next(model.parameters()).device |
|
|
|
audios = [] |
|
|
|
|
|
mel_batches, mel_frames = pad_mels_to_tensors(mels, batch_size) |
|
if f0s != None: |
|
f0_batches = pad_f0_to_tensors(f0s, batch_size) |
|
|
|
if f0s == None: |
|
for mel_batch, mel_frame in zip(mel_batches, mel_frames): |
|
for i in range(mel_batch.shape[0]): |
|
mel = mel_batch[i] |
|
frame = mel_frame[i] |
|
audio = vocoder_inference( |
|
cfg, |
|
model, |
|
mel.unsqueeze(0), |
|
device=device, |
|
fast_inference=fast_inference, |
|
).squeeze(0) |
|
|
|
|
|
audio_length = frame * model.cfg.preprocess.hop_size |
|
audio = audio[:audio_length] |
|
|
|
audios.append(audio) |
|
else: |
|
for mel_batch, f0_batch, mel_frame in zip(mel_batches, f0_batches, mel_frames): |
|
for i in range(mel_batch.shape[0]): |
|
mel = mel_batch[i] |
|
f0 = f0_batch[i] |
|
frame = mel_frame[i] |
|
audio = vocoder_inference( |
|
cfg, |
|
model, |
|
mel.unsqueeze(0), |
|
f0s=f0.unsqueeze(0), |
|
device=device, |
|
fast_inference=fast_inference, |
|
).squeeze(0) |
|
|
|
|
|
audio_length = frame * model.cfg.preprocess.hop_size |
|
audio = audio[:audio_length] |
|
|
|
audios.append(audio) |
|
return audios |
|
|