|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import math |
|
from torch.nn import functional as F |
|
|
|
|
|
class StyleAdaptiveLayerNorm(nn.Module): |
|
def __init__(self, normalized_shape, eps=1e-5): |
|
super().__init__() |
|
self.in_dim = normalized_shape |
|
self.norm = nn.LayerNorm(self.in_dim, eps=eps, elementwise_affine=False) |
|
self.style = nn.Linear(self.in_dim, self.in_dim * 2) |
|
self.style.bias.data[: self.in_dim] = 1 |
|
self.style.bias.data[self.in_dim :] = 0 |
|
|
|
def forward(self, x, condition): |
|
|
|
|
|
style = self.style(torch.mean(condition, dim=1, keepdim=True)) |
|
|
|
gamma, beta = style.chunk(2, -1) |
|
|
|
out = self.norm(x) |
|
|
|
out = gamma * out + beta |
|
return out |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout, max_len=5000): |
|
super().__init__() |
|
|
|
self.dropout = dropout |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) |
|
) |
|
pe = torch.zeros(max_len, 1, d_model) |
|
pe[:, 0, 0::2] = torch.sin(position * div_term) |
|
pe[:, 0, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[: x.size(0)] |
|
return F.dropout(x, self.dropout, training=self.training) |
|
|
|
|
|
class TransformerFFNLayer(nn.Module): |
|
def __init__( |
|
self, encoder_hidden, conv_filter_size, conv_kernel_size, encoder_dropout |
|
): |
|
super().__init__() |
|
|
|
self.encoder_hidden = encoder_hidden |
|
self.conv_filter_size = conv_filter_size |
|
self.conv_kernel_size = conv_kernel_size |
|
self.encoder_dropout = encoder_dropout |
|
|
|
self.ffn_1 = nn.Conv1d( |
|
self.encoder_hidden, |
|
self.conv_filter_size, |
|
self.conv_kernel_size, |
|
padding=self.conv_kernel_size // 2, |
|
) |
|
self.ffn_1.weight.data.normal_(0.0, 0.02) |
|
self.ffn_2 = nn.Linear(self.conv_filter_size, self.encoder_hidden) |
|
self.ffn_2.weight.data.normal_(0.0, 0.02) |
|
|
|
def forward(self, x): |
|
|
|
x = self.ffn_1(x.permute(0, 2, 1)).permute( |
|
0, 2, 1 |
|
) |
|
x = F.relu(x) |
|
x = F.dropout(x, self.encoder_dropout, training=self.training) |
|
x = self.ffn_2(x) |
|
return x |
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
def __init__( |
|
self, |
|
encoder_hidden, |
|
encoder_head, |
|
conv_filter_size, |
|
conv_kernel_size, |
|
encoder_dropout, |
|
use_cln, |
|
): |
|
super().__init__() |
|
self.encoder_hidden = encoder_hidden |
|
self.encoder_head = encoder_head |
|
self.conv_filter_size = conv_filter_size |
|
self.conv_kernel_size = conv_kernel_size |
|
self.encoder_dropout = encoder_dropout |
|
self.use_cln = use_cln |
|
|
|
if not self.use_cln: |
|
self.ln_1 = nn.LayerNorm(self.encoder_hidden) |
|
self.ln_2 = nn.LayerNorm(self.encoder_hidden) |
|
else: |
|
self.ln_1 = StyleAdaptiveLayerNorm(self.encoder_hidden) |
|
self.ln_2 = StyleAdaptiveLayerNorm(self.encoder_hidden) |
|
|
|
self.self_attn = nn.MultiheadAttention( |
|
self.encoder_hidden, self.encoder_head, batch_first=True |
|
) |
|
|
|
self.ffn = TransformerFFNLayer( |
|
self.encoder_hidden, |
|
self.conv_filter_size, |
|
self.conv_kernel_size, |
|
self.encoder_dropout, |
|
) |
|
|
|
def forward(self, x, key_padding_mask, conditon=None): |
|
|
|
|
|
|
|
residual = x |
|
if self.use_cln: |
|
x = self.ln_1(x, conditon) |
|
else: |
|
x = self.ln_1(x) |
|
|
|
if key_padding_mask != None: |
|
key_padding_mask_input = ~(key_padding_mask.bool()) |
|
else: |
|
key_padding_mask_input = None |
|
x, _ = self.self_attn( |
|
query=x, key=x, value=x, key_padding_mask=key_padding_mask_input |
|
) |
|
x = F.dropout(x, self.encoder_dropout, training=self.training) |
|
x = residual + x |
|
|
|
|
|
residual = x |
|
if self.use_cln: |
|
x = self.ln_2(x, conditon) |
|
else: |
|
x = self.ln_2(x) |
|
x = self.ffn(x) |
|
x = residual + x |
|
|
|
return x |
|
|
|
|
|
class TransformerEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
enc_emb_tokens=None, |
|
encoder_layer=4, |
|
encoder_hidden=256, |
|
encoder_head=4, |
|
conv_filter_size=1024, |
|
conv_kernel_size=5, |
|
encoder_dropout=0.1, |
|
use_cln=False, |
|
cfg=None, |
|
): |
|
super().__init__() |
|
|
|
self.encoder_layer = ( |
|
encoder_layer if encoder_layer is not None else cfg.encoder_layer |
|
) |
|
self.encoder_hidden = ( |
|
encoder_hidden if encoder_hidden is not None else cfg.encoder_hidden |
|
) |
|
self.encoder_head = ( |
|
encoder_head if encoder_head is not None else cfg.encoder_head |
|
) |
|
self.conv_filter_size = ( |
|
conv_filter_size if conv_filter_size is not None else cfg.conv_filter_size |
|
) |
|
self.conv_kernel_size = ( |
|
conv_kernel_size if conv_kernel_size is not None else cfg.conv_kernel_size |
|
) |
|
self.encoder_dropout = ( |
|
encoder_dropout if encoder_dropout is not None else cfg.encoder_dropout |
|
) |
|
self.use_cln = use_cln if use_cln is not None else cfg.use_cln |
|
|
|
if enc_emb_tokens != None: |
|
self.use_enc_emb = True |
|
self.enc_emb_tokens = enc_emb_tokens |
|
else: |
|
self.use_enc_emb = False |
|
|
|
self.position_emb = PositionalEncoding( |
|
self.encoder_hidden, self.encoder_dropout |
|
) |
|
|
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend( |
|
[ |
|
TransformerEncoderLayer( |
|
self.encoder_hidden, |
|
self.encoder_head, |
|
self.conv_filter_size, |
|
self.conv_kernel_size, |
|
self.encoder_dropout, |
|
self.use_cln, |
|
) |
|
for i in range(self.encoder_layer) |
|
] |
|
) |
|
|
|
if self.use_cln: |
|
self.last_ln = StyleAdaptiveLayerNorm(self.encoder_hidden) |
|
else: |
|
self.last_ln = nn.LayerNorm(self.encoder_hidden) |
|
|
|
def forward(self, x, key_padding_mask, condition=None): |
|
if len(x.shape) == 2 and self.use_enc_emb: |
|
x = self.enc_emb_tokens(x) |
|
x = self.position_emb(x) |
|
else: |
|
x = self.position_emb(x) |
|
|
|
for layer in self.layers: |
|
x = layer(x, key_padding_mask, condition) |
|
|
|
if self.use_cln: |
|
x = self.last_ln(x, condition) |
|
else: |
|
x = self.last_ln(x) |
|
|
|
return x |
|
|