|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import TransformerEncoder, TransformerEncoderLayer |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.cfg = cfg |
|
|
|
dropout = self.cfg.dropout |
|
nhead = self.cfg.n_heads |
|
nlayers = self.cfg.n_layers |
|
input_dim = self.cfg.input_dim |
|
output_dim = self.cfg.output_dim |
|
|
|
d_model = input_dim |
|
self.pos_encoder = PositionalEncoding(d_model, dropout) |
|
encoder_layers = TransformerEncoderLayer( |
|
d_model, nhead, dropout=dropout, batch_first=True |
|
) |
|
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) |
|
|
|
self.output_mlp = nn.Linear(d_model, output_dim) |
|
|
|
def forward(self, x, mask=None): |
|
""" |
|
Args: |
|
x: (N, seq_len, input_dim) |
|
Returns: |
|
output: (N, seq_len, output_dim) |
|
""" |
|
|
|
src = self.pos_encoder(x) |
|
|
|
|
|
output = self.transformer_encoder(src) |
|
|
|
output = self.output_mlp(output) |
|
return output |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pe = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
|
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: Tensor, shape [N, seq_len, d] |
|
""" |
|
|
|
|
|
|
|
|
|
x = x + self.pe[:, : x.size(1), :] |
|
|
|
return self.dropout(x) |
|
|