|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import functools |
|
import torch.nn.functional as F |
|
|
|
|
|
def hinge_d_loss(logits_real, logits_fake): |
|
loss_real = torch.mean(F.relu(1.0 - logits_real)) |
|
loss_fake = torch.mean(F.relu(1.0 + logits_fake)) |
|
d_loss = 0.5 * (loss_real + loss_fake) |
|
return d_loss |
|
|
|
|
|
def vanilla_d_loss(logits_real, logits_fake): |
|
d_loss = 0.5 * ( |
|
torch.mean(F.softplus(-logits_real)) + torch.mean(F.softplus(logits_fake)) |
|
) |
|
return d_loss |
|
|
|
|
|
def adopt_weight(weight, global_step, threshold=0, value=0.0): |
|
if global_step < threshold: |
|
weight = value |
|
return weight |
|
|
|
|
|
class ActNorm(nn.Module): |
|
def __init__( |
|
self, num_features, logdet=False, affine=True, allow_reverse_init=False |
|
): |
|
assert affine |
|
super().__init__() |
|
self.logdet = logdet |
|
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) |
|
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) |
|
self.allow_reverse_init = allow_reverse_init |
|
|
|
self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8)) |
|
|
|
def initialize(self, input): |
|
with torch.no_grad(): |
|
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) |
|
mean = ( |
|
flatten.mean(1) |
|
.unsqueeze(1) |
|
.unsqueeze(2) |
|
.unsqueeze(3) |
|
.permute(1, 0, 2, 3) |
|
) |
|
std = ( |
|
flatten.std(1) |
|
.unsqueeze(1) |
|
.unsqueeze(2) |
|
.unsqueeze(3) |
|
.permute(1, 0, 2, 3) |
|
) |
|
|
|
self.loc.data.copy_(-mean) |
|
self.scale.data.copy_(1 / (std + 1e-6)) |
|
|
|
def forward(self, input, reverse=False): |
|
if reverse: |
|
return self.reverse(input) |
|
if len(input.shape) == 2: |
|
input = input[:, :, None, None] |
|
squeeze = True |
|
else: |
|
squeeze = False |
|
|
|
_, _, height, width = input.shape |
|
|
|
if self.training and self.initialized.item() == 0: |
|
self.initialize(input) |
|
self.initialized.fill_(1) |
|
|
|
h = self.scale * (input + self.loc) |
|
|
|
if squeeze: |
|
h = h.squeeze(-1).squeeze(-1) |
|
|
|
if self.logdet: |
|
log_abs = torch.log(torch.abs(self.scale)) |
|
logdet = height * width * torch.sum(log_abs) |
|
logdet = logdet * torch.ones(input.shape[0]).to(input) |
|
return h, logdet |
|
|
|
return h |
|
|
|
def reverse(self, output): |
|
if self.training and self.initialized.item() == 0: |
|
if not self.allow_reverse_init: |
|
raise RuntimeError( |
|
"Initializing ActNorm in reverse direction is " |
|
"disabled by default. Use allow_reverse_init=True to enable." |
|
) |
|
else: |
|
self.initialize(output) |
|
self.initialized.fill_(1) |
|
|
|
if len(output.shape) == 2: |
|
output = output[:, :, None, None] |
|
squeeze = True |
|
else: |
|
squeeze = False |
|
|
|
h = output / self.scale - self.loc |
|
|
|
if squeeze: |
|
h = h.squeeze(-1).squeeze(-1) |
|
return h |
|
|
|
|
|
def weights_init(m): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
nn.init.normal_(m.weight.data, 0.0, 0.02) |
|
elif classname.find("BatchNorm") != -1: |
|
nn.init.normal_(m.weight.data, 1.0, 0.02) |
|
nn.init.constant_(m.bias.data, 0) |
|
|
|
|
|
class NLayerDiscriminator(nn.Module): |
|
"""Defines a PatchGAN discriminator as in Pix2Pix |
|
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py |
|
""" |
|
|
|
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): |
|
"""Construct a PatchGAN discriminator |
|
Parameters: |
|
input_nc (int) -- the number of channels in input images |
|
ndf (int) -- the number of filters in the last conv layer |
|
n_layers (int) -- the number of conv layers in the discriminator |
|
norm_layer -- normalization layer |
|
""" |
|
super(NLayerDiscriminator, self).__init__() |
|
if not use_actnorm: |
|
norm_layer = nn.BatchNorm2d |
|
else: |
|
norm_layer = ActNorm |
|
if ( |
|
type(norm_layer) == functools.partial |
|
): |
|
use_bias = norm_layer.func != nn.BatchNorm2d |
|
else: |
|
use_bias = norm_layer != nn.BatchNorm2d |
|
|
|
kw = 4 |
|
padw = 1 |
|
sequence = [ |
|
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), |
|
nn.LeakyReLU(0.2, True), |
|
] |
|
nf_mult = 1 |
|
nf_mult_prev = 1 |
|
for n in range(1, n_layers): |
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2**n, 8) |
|
sequence += [ |
|
nn.Conv2d( |
|
ndf * nf_mult_prev, |
|
ndf * nf_mult, |
|
kernel_size=kw, |
|
stride=2, |
|
padding=padw, |
|
bias=use_bias, |
|
), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True), |
|
] |
|
|
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2**n_layers, 8) |
|
sequence += [ |
|
nn.Conv2d( |
|
ndf * nf_mult_prev, |
|
ndf * nf_mult, |
|
kernel_size=kw, |
|
stride=1, |
|
padding=padw, |
|
bias=use_bias, |
|
), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, True), |
|
] |
|
|
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) |
|
] |
|
self.main = nn.Sequential(*sequence) |
|
|
|
def forward(self, input): |
|
"""Standard forward.""" |
|
return self.main(input) |
|
|
|
|
|
class AutoencoderLossWithDiscriminator(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.cfg = cfg |
|
self.kl_weight = cfg.kl_weight |
|
self.logvar = nn.Parameter(torch.ones(size=()) * cfg.logvar_init) |
|
|
|
self.discriminator = NLayerDiscriminator( |
|
input_nc=cfg.disc_in_channels, |
|
n_layers=cfg.disc_num_layers, |
|
use_actnorm=cfg.use_actnorm, |
|
).apply(weights_init) |
|
|
|
self.discriminator_iter_start = cfg.disc_start |
|
self.discriminator_weight = cfg.disc_weight |
|
self.disc_factor = cfg.disc_factor |
|
self.disc_loss = hinge_d_loss |
|
|
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer): |
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
|
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) |
|
d_weight = torch.clamp( |
|
d_weight, self.cfg.min_adapt_d_weight, self.cfg.max_adapt_d_weight |
|
).detach() |
|
d_weight = d_weight * self.discriminator_weight |
|
return d_weight |
|
|
|
def forward( |
|
self, |
|
inputs, |
|
reconstructions, |
|
posteriors, |
|
optimizer_idx, |
|
global_step, |
|
last_layer, |
|
split="train", |
|
weights=None, |
|
): |
|
rec_loss = torch.abs( |
|
inputs.contiguous() - reconstructions.contiguous() |
|
) |
|
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar |
|
weighted_nll_loss = nll_loss |
|
if weights is not None: |
|
weighted_nll_loss = weights * nll_loss |
|
|
|
weighted_nll_loss = torch.mean(weighted_nll_loss) |
|
|
|
nll_loss = torch.mean(nll_loss) |
|
kl_loss = posteriors.kl() |
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] |
|
|
|
|
|
|
|
if optimizer_idx == 0: |
|
logits_fake = self.discriminator(reconstructions.contiguous()) |
|
g_loss = -torch.mean(logits_fake) |
|
|
|
if self.disc_factor > 0.0: |
|
try: |
|
d_weight = self.calculate_adaptive_weight( |
|
nll_loss, g_loss, last_layer=last_layer |
|
) |
|
except RuntimeError: |
|
assert not self.training |
|
d_weight = torch.tensor(0.0) |
|
else: |
|
d_weight = torch.tensor(0.0) |
|
|
|
disc_factor = adopt_weight( |
|
self.disc_factor, global_step, threshold=self.discriminator_iter_start |
|
) |
|
|
|
total_loss = ( |
|
weighted_nll_loss |
|
+ self.kl_weight * kl_loss |
|
+ d_weight * disc_factor * g_loss |
|
) |
|
|
|
return { |
|
"loss": total_loss, |
|
"kl_loss": kl_loss, |
|
"rec_loss": rec_loss.mean(), |
|
"nll_loss": nll_loss, |
|
"g_loss": g_loss, |
|
"d_weight": d_weight, |
|
"disc_factor": torch.tensor(disc_factor), |
|
} |
|
|
|
if optimizer_idx == 1: |
|
logits_real = self.discriminator(inputs.contiguous().detach()) |
|
logits_fake = self.discriminator(reconstructions.contiguous().detach()) |
|
|
|
disc_factor = adopt_weight( |
|
self.disc_factor, global_step, threshold=self.discriminator_iter_start |
|
) |
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) |
|
|
|
return { |
|
"d_loss": d_loss, |
|
"logits_real": logits_real.mean(), |
|
"logits_fake": logits_fake.mean(), |
|
} |
|
|