|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from modules.general.utils import Conv1d |
|
|
|
|
|
class GaU(nn.Module): |
|
r"""Gated Activation Unit (GaU) proposed in `Gated Activation Units for Neural |
|
Networks <https://arxiv.org/pdf/1606.05328.pdf>`_. |
|
|
|
Args: |
|
channels: number of input channels. |
|
kernel_size: kernel size of the convolution. |
|
dilation: dilation rate of the convolution. |
|
d_context: dimension of context tensor, None if don't use context. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
kernel_size: int = 3, |
|
dilation: int = 1, |
|
d_context: int = None, |
|
): |
|
super().__init__() |
|
|
|
self.context = d_context |
|
|
|
self.conv = Conv1d( |
|
channels, |
|
channels * 2, |
|
kernel_size, |
|
dilation=dilation, |
|
padding=dilation * (kernel_size - 1) // 2, |
|
) |
|
|
|
if self.context: |
|
self.context_proj = Conv1d(d_context, channels * 2, 1) |
|
|
|
def forward(self, x: torch.Tensor, context: torch.Tensor = None): |
|
r"""Calculate forward propagation. |
|
|
|
Args: |
|
x: input tensor with shape [B, C, T]. |
|
context: context tensor with shape [B, ``d_context``, T], default to None. |
|
""" |
|
|
|
h = self.conv(x) |
|
|
|
if self.context: |
|
h = h + self.context_proj(context) |
|
|
|
h1, h2 = h.chunk(2, 1) |
|
h = torch.tanh(h1) * torch.sigmoid(h2) |
|
|
|
return h |
|
|