|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from modules.general.utils import Linear |
|
|
|
|
|
class PositionEncoder(nn.Module): |
|
r"""Encoder of positional embedding, generates PE and then |
|
feed into 2 full-connected layers with ``SiLU``. |
|
|
|
Args: |
|
d_raw_emb: The dimension of raw embedding vectors. |
|
d_out: The dimension of output embedding vectors, default to ``d_raw_emb``. |
|
d_mlp: The dimension of hidden layer in MLP, default to ``d_raw_emb`` * 4. |
|
activation_function: The activation function used in MLP, default to ``SiLU``. |
|
n_layer: The number of layers in MLP, default to 2. |
|
max_period: controls the minimum frequency of the embeddings. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
d_raw_emb: int = 128, |
|
d_out: int = None, |
|
d_mlp: int = None, |
|
activation_function: str = "SiLU", |
|
n_layer: int = 2, |
|
max_period: int = 10000, |
|
): |
|
super().__init__() |
|
|
|
self.d_raw_emb = d_raw_emb |
|
self.d_out = d_raw_emb if d_out is None else d_out |
|
self.d_mlp = d_raw_emb * 4 if d_mlp is None else d_mlp |
|
self.n_layer = n_layer |
|
self.max_period = max_period |
|
|
|
if activation_function.lower() == "silu": |
|
self.activation_function = "SiLU" |
|
elif activation_function.lower() == "relu": |
|
self.activation_function = "ReLU" |
|
elif activation_function.lower() == "gelu": |
|
self.activation_function = "GELU" |
|
else: |
|
raise ValueError("activation_function must be one of SiLU, ReLU, GELU") |
|
self.activation_function = activation_function |
|
|
|
tmp = [Linear(self.d_raw_emb, self.d_mlp), getattr(nn, activation_function)()] |
|
for _ in range(self.n_layer - 1): |
|
tmp.append(Linear(self.d_mlp, self.d_mlp)) |
|
tmp.append(getattr(nn, activation_function)()) |
|
tmp.append(Linear(self.d_mlp, self.d_out)) |
|
|
|
self.out = nn.Sequential(*tmp) |
|
|
|
def forward(self, steps: torch.Tensor) -> torch.Tensor: |
|
r"""Create and return sinusoidal timestep embeddings directly. |
|
|
|
Args: |
|
steps: a 1D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
|
|
Returns: |
|
an [N x ``d_out``] Tensor of positional embeddings. |
|
""" |
|
|
|
half = self.d_raw_emb // 2 |
|
freqs = torch.exp( |
|
-math.log(self.max_period) |
|
/ half |
|
* torch.arange(half, dtype=torch.float32, device=steps.device) |
|
) |
|
args = steps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if self.d_raw_emb % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 |
|
) |
|
return self.out(embedding) |
|
|