|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
class PromptPreparer: |
|
def prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes): |
|
if self.prefix_mode == 0: |
|
y_emb, prefix_len = self._handle_prefix_mode_0(y, codes, nar_stage) |
|
elif self.prefix_mode == 1: |
|
y_emb, prefix_len = self._handle_prefix_mode_1(y, y_lens, codes, nar_stage) |
|
elif self.prefix_mode in [2, 4]: |
|
y_emb, prefix_len = self._handle_prefix_mode_2_4( |
|
y, y_lens, codes, nar_stage, y_prompts_codes |
|
) |
|
else: |
|
raise ValueError("Invalid prefix mode") |
|
|
|
return y_emb, prefix_len |
|
|
|
def _handle_prefix_mode_0(self, y, codes, nar_stage): |
|
prefix_len = 0 |
|
y_emb = self.nar_audio_embeddings[0](y) |
|
for j in range(1, nar_stage): |
|
y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j]) |
|
return y_emb, 0 |
|
|
|
def _handle_prefix_mode_1(self, y, y_lens, codes, nar_stage): |
|
int_low = (0.25 * y_lens.min()).type(torch.int64).item() |
|
prefix_len = torch.randint(int_low, int_low * 2, size=()).item() |
|
prefix_len = min(prefix_len, 225) |
|
|
|
y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len]) |
|
y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:]) |
|
for j in range(1, self.num_quantizers): |
|
y_prompts += self.nar_audio_embeddings[j](codes[:, :prefix_len, j]) |
|
if j < nar_stage: |
|
y_emb += self.nar_audio_embeddings[j](codes[:, prefix_len:, j]) |
|
y_emb = torch.concat([y_prompts, y_emb], axis=1) |
|
return y_emb, prefix_len |
|
|
|
def _handle_prefix_mode_2_4(self, y, y_lens, codes, nar_stage, y_prompts_codes): |
|
if self.prefix_mode == 2: |
|
prefix_len = min(225, int(0.25 * y_lens.min().item())) |
|
|
|
y_prompts_codes = [] |
|
for b in range(codes.shape[0]): |
|
start = self.rng.randint(0, y_lens[b].item() - prefix_len) |
|
y_prompts_codes.append( |
|
torch.clone(codes[b, start : start + prefix_len]) |
|
) |
|
codes[b, start : start + prefix_len, nar_stage] = self.audio_token_num |
|
y_prompts_codes = torch.stack(y_prompts_codes, dim=0) |
|
else: |
|
prefix_len = y_prompts_codes.shape[1] |
|
|
|
y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0]) |
|
y_emb = self.nar_audio_embeddings[0](y) |
|
for j in range(1, self.num_quantizers): |
|
y_prompts += self.nar_audio_embeddings[j](y_prompts_codes[..., j]) |
|
if j < nar_stage: |
|
y_emb += self.nar_audio_embeddings[j](codes[..., j]) |
|
y_emb = torch.concat([y_prompts, y_emb], axis=1) |
|
|
|
return y_emb, prefix_len |
|
|