Hecheng0625's picture
Upload 409 files
c968fc3 verified
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm
from models.codec.amphion_codec.quantize import (
ResidualVQ,
VectorQuantize,
FactorizedVectorQuantize,
LookupFreeQuantize,
)
from models.codec.amphion_codec.vocos import Vocos
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
# Scripting this brings model speed up 1.4x
@torch.jit.script
def snake(x, alpha):
shape = x.shape
x = x.reshape(shape[0], shape[1], -1)
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
x = x.reshape(shape)
return x
class Snake1d(nn.Module):
def __init__(self, channels):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
def forward(self, x):
return snake(x, self.alpha)
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
y = self.block(x)
pad = (x.shape[-1] - y.shape[-1]) // 2
if pad > 0:
x = x[..., pad:-pad]
return x + y
class EncoderBlock(nn.Module):
def __init__(self, dim: int = 16, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
ResidualUnit(dim // 2, dilation=1),
ResidualUnit(dim // 2, dilation=3),
ResidualUnit(dim // 2, dilation=9),
Snake1d(dim // 2),
WNConv1d(
dim // 2,
dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
),
)
def forward(self, x):
return self.block(x)
class CodecEncoder(nn.Module):
def __init__(
self,
d_model: int = 64,
up_ratios: list = [4, 5, 5, 6],
out_channels: int = 256,
use_tanh: bool = False,
cfg=None,
):
super().__init__()
d_model = cfg.d_model if cfg is not None else d_model
up_ratios = cfg.up_ratios if cfg is not None else up_ratios
out_channels = cfg.out_channels if cfg is not None else out_channels
use_tanh = cfg.use_tanh if cfg is not None else use_tanh
# Create first convolution
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride in up_ratios:
d_model *= 2
self.block += [EncoderBlock(d_model, stride=stride)]
# Create last convolution
self.block += [
Snake1d(d_model),
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
]
if use_tanh:
self.block += [nn.Tanh()]
# Wrap black into nn.Sequential
self.block = nn.Sequential(*self.block)
self.enc_dim = d_model
self.reset_parameters()
def forward(self, x):
return self.block(x)
def reset_parameters(self):
self.apply(init_weights)
class DecoderBlock(nn.Module):
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
super().__init__()
self.block = nn.Sequential(
Snake1d(input_dim),
WNConvTranspose1d(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=stride // 2 + stride % 2,
output_padding=stride % 2,
),
ResidualUnit(output_dim, dilation=1),
ResidualUnit(output_dim, dilation=3),
ResidualUnit(output_dim, dilation=9),
)
def forward(self, x):
return self.block(x)
class CodecDecoder(nn.Module):
def __init__(
self,
in_channels: int = 256,
upsample_initial_channel: int = 1536,
up_ratios: list = [5, 5, 4, 2],
num_quantizers: int = 8,
codebook_size: int = 1024,
codebook_dim: int = 256,
quantizer_type: str = "vq",
quantizer_dropout: float = 0.5,
commitment: float = 0.25,
codebook_loss_weight: float = 1.0,
use_l2_normlize: bool = False,
codebook_type: str = "euclidean",
kmeans_init: bool = False,
kmeans_iters: int = 10,
decay: float = 0.8,
eps: float = 1e-5,
threshold_ema_dead_code: int = 2,
weight_init: bool = False,
use_vocos: bool = False,
vocos_dim: int = 384,
vocos_intermediate_dim: int = 1152,
vocos_num_layers: int = 8,
n_fft: int = 800,
hop_size: int = 200,
padding: str = "same",
cfg=None,
):
super().__init__()
in_channels = (
cfg.in_channels
if cfg is not None and hasattr(cfg, "in_channels")
else in_channels
)
upsample_initial_channel = (
cfg.upsample_initial_channel
if cfg is not None and hasattr(cfg, "upsample_initial_channel")
else upsample_initial_channel
)
up_ratios = (
cfg.up_ratios
if cfg is not None and hasattr(cfg, "up_ratios")
else up_ratios
)
num_quantizers = (
cfg.num_quantizers
if cfg is not None and hasattr(cfg, "num_quantizers")
else num_quantizers
)
codebook_size = (
cfg.codebook_size
if cfg is not None and hasattr(cfg, "codebook_size")
else codebook_size
)
codebook_dim = (
cfg.codebook_dim
if cfg is not None and hasattr(cfg, "codebook_dim")
else codebook_dim
)
quantizer_type = (
cfg.quantizer_type
if cfg is not None and hasattr(cfg, "quantizer_type")
else quantizer_type
)
quantizer_dropout = (
cfg.quantizer_dropout
if cfg is not None and hasattr(cfg, "quantizer_dropout")
else quantizer_dropout
)
commitment = (
cfg.commitment
if cfg is not None and hasattr(cfg, "commitment")
else commitment
)
codebook_loss_weight = (
cfg.codebook_loss_weight
if cfg is not None and hasattr(cfg, "codebook_loss_weight")
else codebook_loss_weight
)
use_l2_normlize = (
cfg.use_l2_normlize
if cfg is not None and hasattr(cfg, "use_l2_normlize")
else use_l2_normlize
)
codebook_type = (
cfg.codebook_type
if cfg is not None and hasattr(cfg, "codebook_type")
else codebook_type
)
kmeans_init = (
cfg.kmeans_init
if cfg is not None and hasattr(cfg, "kmeans_init")
else kmeans_init
)
kmeans_iters = (
cfg.kmeans_iters
if cfg is not None and hasattr(cfg, "kmeans_iters")
else kmeans_iters
)
decay = cfg.decay if cfg is not None and hasattr(cfg, "decay") else decay
eps = cfg.eps if cfg is not None and hasattr(cfg, "eps") else eps
threshold_ema_dead_code = (
cfg.threshold_ema_dead_code
if cfg is not None and hasattr(cfg, "threshold_ema_dead_code")
else threshold_ema_dead_code
)
weight_init = (
cfg.weight_init
if cfg is not None and hasattr(cfg, "weight_init")
else weight_init
)
use_vocos = (
cfg.use_vocos
if cfg is not None and hasattr(cfg, "use_vocos")
else use_vocos
)
vocos_dim = (
cfg.vocos_dim
if cfg is not None and hasattr(cfg, "vocos_dim")
else vocos_dim
)
vocos_intermediate_dim = (
cfg.vocos_intermediate_dim
if cfg is not None and hasattr(cfg, "vocos_intermediate_dim")
else vocos_intermediate_dim
)
vocos_num_layers = (
cfg.vocos_num_layers
if cfg is not None and hasattr(cfg, "vocos_num_layers")
else vocos_num_layers
)
n_fft = cfg.n_fft if cfg is not None and hasattr(cfg, "n_fft") else n_fft
hop_size = (
cfg.hop_size if cfg is not None and hasattr(cfg, "hop_size") else hop_size
)
padding = (
cfg.padding if cfg is not None and hasattr(cfg, "padding") else padding
)
if quantizer_type == "vq":
self.quantizer = ResidualVQ(
input_dim=in_channels,
num_quantizers=num_quantizers,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_type=quantizer_type,
quantizer_dropout=quantizer_dropout,
commitment=commitment,
codebook_loss_weight=codebook_loss_weight,
use_l2_normlize=use_l2_normlize,
codebook_type=codebook_type,
kmeans_init=kmeans_init,
kmeans_iters=kmeans_iters,
decay=decay,
eps=eps,
threshold_ema_dead_code=threshold_ema_dead_code,
weight_init=weight_init,
)
elif quantizer_type == "fvq":
self.quantizer = ResidualVQ(
input_dim=in_channels,
num_quantizers=num_quantizers,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_type=quantizer_type,
quantizer_dropout=quantizer_dropout,
commitment=commitment,
codebook_loss_weight=codebook_loss_weight,
use_l2_normlize=use_l2_normlize,
)
elif quantizer_type == "lfq":
self.quantizer = ResidualVQ(
input_dim=in_channels,
num_quantizers=num_quantizers,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_type=quantizer_type,
)
else:
raise ValueError(f"Unknown quantizer type {quantizer_type}")
if not use_vocos:
# Add first conv layer
channels = upsample_initial_channel
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
# Add upsampling + MRF blocks
for i, stride in enumerate(up_ratios):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, stride)]
# Add final conv layer
layers += [
Snake1d(output_dim),
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
if use_vocos:
self.model = Vocos(
input_channels=in_channels,
dim=vocos_dim,
intermediate_dim=vocos_intermediate_dim,
num_layers=vocos_num_layers,
adanorm_num_embeddings=None,
n_fft=n_fft,
hop_size=hop_size,
padding=padding,
)
self.reset_parameters()
def forward(self, x=None, vq=False, eval_vq=False, n_quantizers=None):
"""
if vq is True, x = encoder output, then return quantized output;
else, x = quantized output, then return decoder output
"""
if vq is True:
if eval_vq:
self.quantizer.eval()
(
quantized_out,
all_indices,
all_commit_losses,
all_codebook_losses,
all_quantized,
) = self.quantizer(x, n_quantizers=n_quantizers)
return (
quantized_out,
all_indices,
all_commit_losses,
all_codebook_losses,
all_quantized,
)
return self.model(x)
def quantize(self, x, n_quantizers=None):
self.quantizer.eval()
quantized_out, vq, _, _, _ = self.quantizer(x, n_quantizers=n_quantizers)
return quantized_out, vq
# TODO: check consistency of vq2emb and quantize
def vq2emb(self, vq, n_quantizers=None):
return self.quantizer.vq2emb(vq, n_quantizers=n_quantizers)
def decode(self, x):
return self.model(x)
def latent2dist(self, x, n_quantizers=None):
return self.quantizer.latent2dist(x, n_quantizers=n_quantizers)
def reset_parameters(self):
self.apply(init_weights)