|
|
|
|
|
|
|
|
|
|
|
from typing import Iterable |
|
import torch |
|
import numpy as np |
|
import torch.utils.data |
|
from torch.nn.utils.rnn import pad_sequence |
|
from utils.data_utils import * |
|
from torch.utils.data import ConcatDataset, Dataset |
|
|
|
|
|
class CodecDataset(torch.utils.data.Dataset): |
|
def __init__(self, cfg, dataset, is_valid=False): |
|
""" |
|
Args: |
|
cfg: config |
|
dataset: dataset name |
|
is_valid: whether to use train or valid dataset |
|
""" |
|
assert isinstance(dataset, str) |
|
|
|
processed_data_dir = os.path.join(cfg.preprocess.processed_dir, dataset) |
|
|
|
meta_file = cfg.preprocess.valid_file if is_valid else cfg.preprocess.train_file |
|
self.metafile_path = os.path.join(processed_data_dir, meta_file) |
|
self.metadata = self.get_metadata() |
|
|
|
self.data_root = processed_data_dir |
|
self.cfg = cfg |
|
|
|
if cfg.preprocess.use_audio: |
|
self.utt2audio_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2audio_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.audio_dir, |
|
uid + ".npy", |
|
) |
|
elif cfg.preprocess.use_label: |
|
self.utt2label_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2label_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.label_dir, |
|
uid + ".npy", |
|
) |
|
elif cfg.preprocess.use_one_hot: |
|
self.utt2one_hot_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2one_hot_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.one_hot_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_mel: |
|
self.utt2mel_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2mel_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.mel_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_frame_pitch: |
|
self.utt2frame_pitch_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
self.utt2frame_pitch_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.pitch_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_uv: |
|
self.utt2uv_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
self.utt2uv_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.uv_dir, |
|
uid + ".npy", |
|
) |
|
|
|
if cfg.preprocess.use_amplitude_phase: |
|
self.utt2logamp_path = {} |
|
self.utt2pha_path = {} |
|
self.utt2rea_path = {} |
|
self.utt2imag_path = {} |
|
for utt_info in self.metadata: |
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
self.utt2logamp_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.log_amplitude_dir, |
|
uid + ".npy", |
|
) |
|
self.utt2pha_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.phase_dir, |
|
uid + ".npy", |
|
) |
|
self.utt2rea_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.real_dir, |
|
uid + ".npy", |
|
) |
|
self.utt2imag_path[utt] = os.path.join( |
|
cfg.preprocess.processed_dir, |
|
dataset, |
|
cfg.preprocess.imaginary_dir, |
|
uid + ".npy", |
|
) |
|
|
|
def __getitem__(self, index): |
|
utt_info = self.metadata[index] |
|
|
|
dataset = utt_info["Dataset"] |
|
uid = utt_info["Uid"] |
|
utt = "{}_{}".format(dataset, uid) |
|
|
|
single_feature = dict() |
|
|
|
if self.cfg.preprocess.use_mel: |
|
mel = np.load(self.utt2mel_path[utt]) |
|
assert mel.shape[0] == self.cfg.preprocess.n_mel |
|
|
|
if "target_len" not in single_feature.keys(): |
|
single_feature["target_len"] = mel.shape[1] |
|
|
|
single_feature["mel"] = mel |
|
|
|
if self.cfg.preprocess.use_frame_pitch: |
|
frame_pitch = np.load(self.utt2frame_pitch_path[utt]) |
|
|
|
if "target_len" not in single_feature.keys(): |
|
single_feature["target_len"] = len(frame_pitch) |
|
|
|
aligned_frame_pitch = align_length( |
|
frame_pitch, single_feature["target_len"] |
|
) |
|
|
|
single_feature["frame_pitch"] = aligned_frame_pitch |
|
|
|
if self.cfg.preprocess.use_audio: |
|
audio = np.load(self.utt2audio_path[utt]) |
|
|
|
single_feature["audio"] = audio |
|
|
|
return single_feature |
|
|
|
def get_metadata(self): |
|
with open(self.metafile_path, "r", encoding="utf-8") as f: |
|
metadata = json.load(f) |
|
|
|
return metadata |
|
|
|
def get_dataset_name(self): |
|
return self.metadata[0]["Dataset"] |
|
|
|
def __len__(self): |
|
return len(self.metadata) |
|
|
|
|
|
class CodecConcatDataset(ConcatDataset): |
|
def __init__(self, datasets: Iterable[Dataset], full_audio_inference=False): |
|
"""Concatenate a series of datasets with their random inference audio merged.""" |
|
super().__init__(datasets) |
|
|
|
self.cfg = self.datasets[0].cfg |
|
|
|
self.metadata = [] |
|
|
|
|
|
for dataset in self.datasets: |
|
self.metadata += dataset.metadata |
|
|
|
|
|
if full_audio_inference: |
|
self.eval_audios = [] |
|
self.eval_dataset_names = [] |
|
if self.cfg.preprocess.use_mel: |
|
self.eval_mels = [] |
|
if self.cfg.preprocess.use_frame_pitch: |
|
self.eval_pitchs = [] |
|
for dataset in self.datasets: |
|
self.eval_audios.append(dataset.eval_audio) |
|
self.eval_dataset_names.append(dataset.get_dataset_name()) |
|
if self.cfg.preprocess.use_mel: |
|
self.eval_mels.append(dataset.eval_mel) |
|
if self.cfg.preprocess.use_frame_pitch: |
|
self.eval_pitchs.append(dataset.eval_pitch) |
|
|
|
|
|
class CodecCollator(object): |
|
"""Zero-pads model inputs and targets based on number of frames per step""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg |
|
|
|
def __call__(self, batch): |
|
packed_batch_features = dict() |
|
|
|
|
|
|
|
|
|
|
|
for key in batch[0].keys(): |
|
if key == "target_len": |
|
packed_batch_features["target_len"] = torch.LongTensor( |
|
[b["target_len"] for b in batch] |
|
) |
|
masks = [ |
|
torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch |
|
] |
|
packed_batch_features["mask"] = pad_sequence( |
|
masks, batch_first=True, padding_value=0 |
|
) |
|
elif key == "mel": |
|
values = [torch.from_numpy(b[key]).T for b in batch] |
|
packed_batch_features[key] = pad_sequence( |
|
values, batch_first=True, padding_value=0 |
|
) |
|
else: |
|
values = [torch.from_numpy(b[key]) for b in batch] |
|
packed_batch_features[key] = pad_sequence( |
|
values, batch_first=True, padding_value=0 |
|
) |
|
|
|
return packed_batch_features |
|
|