|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn, sin, pow |
|
from torch.nn import Parameter |
|
import torch.nn.functional as F |
|
from torch.nn.utils import weight_norm |
|
from .alias_free_torch import * |
|
from .quantize import * |
|
from einops import rearrange |
|
from einops.layers.torch import Rearrange |
|
from .transformer import TransformerEncoder |
|
from .gradient_reversal import GradientReversal |
|
from .melspec import MelSpectrogram |
|
|
|
|
|
def init_weights(m): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def WNConv1d(*args, **kwargs): |
|
return weight_norm(nn.Conv1d(*args, **kwargs)) |
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs): |
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) |
|
|
|
|
|
class CNNLSTM(nn.Module): |
|
def __init__(self, indim, outdim, head, global_pred=False): |
|
super().__init__() |
|
self.global_pred = global_pred |
|
self.model = nn.Sequential( |
|
ResidualUnit(indim, dilation=1), |
|
ResidualUnit(indim, dilation=2), |
|
ResidualUnit(indim, dilation=3), |
|
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)), |
|
Rearrange("b c t -> b t c"), |
|
) |
|
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)]) |
|
|
|
def forward(self, x): |
|
|
|
x = self.model(x) |
|
if self.global_pred: |
|
x = torch.mean(x, dim=1, keepdim=False) |
|
outs = [head(x) for head in self.heads] |
|
return outs |
|
|
|
|
|
class SnakeBeta(nn.Module): |
|
""" |
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components |
|
Shape: |
|
- Input: (B, C, T) |
|
- Output: (B, C, T), same shape as the input |
|
Parameters: |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
References: |
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: |
|
https://arxiv.org/abs/2006.08195 |
|
Examples: |
|
>>> a1 = snakebeta(256) |
|
>>> x = torch.randn(256) |
|
>>> x = a1(x) |
|
""" |
|
|
|
def __init__( |
|
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False |
|
): |
|
""" |
|
Initialization. |
|
INPUT: |
|
- in_features: shape of the input |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
alpha is initialized to 1 by default, higher values = higher-frequency. |
|
beta is initialized to 1 by default, higher values = higher-magnitude. |
|
alpha will be trained along with the rest of your model. |
|
""" |
|
super(SnakeBeta, self).__init__() |
|
self.in_features = in_features |
|
|
|
|
|
self.alpha_logscale = alpha_logscale |
|
if self.alpha_logscale: |
|
self.alpha = Parameter(torch.zeros(in_features) * alpha) |
|
self.beta = Parameter(torch.zeros(in_features) * alpha) |
|
else: |
|
self.alpha = Parameter(torch.ones(in_features) * alpha) |
|
self.beta = Parameter(torch.ones(in_features) * alpha) |
|
|
|
self.alpha.requires_grad = alpha_trainable |
|
self.beta.requires_grad = alpha_trainable |
|
|
|
self.no_div_by_zero = 0.000000001 |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the function. |
|
Applies the function to the input elementwise. |
|
SnakeBeta := x + 1/b * sin^2 (xa) |
|
""" |
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) |
|
beta = self.beta.unsqueeze(0).unsqueeze(-1) |
|
if self.alpha_logscale: |
|
alpha = torch.exp(alpha) |
|
beta = torch.exp(beta) |
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) |
|
|
|
return x |
|
|
|
|
|
class ResidualUnit(nn.Module): |
|
def __init__(self, dim: int = 16, dilation: int = 1): |
|
super().__init__() |
|
pad = ((7 - 1) * dilation) // 2 |
|
self.block = nn.Sequential( |
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), |
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=1), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.block(x) |
|
|
|
|
|
class EncoderBlock(nn.Module): |
|
def __init__(self, dim: int = 16, stride: int = 1): |
|
super().__init__() |
|
self.block = nn.Sequential( |
|
ResidualUnit(dim // 2, dilation=1), |
|
ResidualUnit(dim // 2, dilation=3), |
|
ResidualUnit(dim // 2, dilation=9), |
|
Activation1d(activation=SnakeBeta(dim // 2, alpha_logscale=True)), |
|
WNConv1d( |
|
dim // 2, |
|
dim, |
|
kernel_size=2 * stride, |
|
stride=stride, |
|
padding=stride // 2 + stride % 2, |
|
), |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
class FACodecEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
ngf=32, |
|
up_ratios=(2, 4, 5, 5), |
|
out_channels=1024, |
|
): |
|
super().__init__() |
|
self.hop_length = np.prod(up_ratios) |
|
self.up_ratios = up_ratios |
|
|
|
|
|
d_model = ngf |
|
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)] |
|
|
|
|
|
for stride in up_ratios: |
|
d_model *= 2 |
|
self.block += [EncoderBlock(d_model, stride=stride)] |
|
|
|
|
|
self.block += [ |
|
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)), |
|
WNConv1d(d_model, out_channels, kernel_size=3, padding=1), |
|
] |
|
|
|
|
|
self.block = nn.Sequential(*self.block) |
|
self.enc_dim = d_model |
|
|
|
self.reset_parameters() |
|
|
|
def forward(self, x): |
|
out = self.block(x) |
|
return out |
|
|
|
def inference(self, x): |
|
return self.block(x) |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
|
|
def _remove_weight_norm(m): |
|
try: |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
|
|
def _apply_weight_norm(m): |
|
if isinstance(m, nn.Conv1d): |
|
torch.nn.utils.weight_norm(m) |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def reset_parameters(self): |
|
self.apply(init_weights) |
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1): |
|
super().__init__() |
|
self.block = nn.Sequential( |
|
Activation1d(activation=SnakeBeta(input_dim, alpha_logscale=True)), |
|
WNConvTranspose1d( |
|
input_dim, |
|
output_dim, |
|
kernel_size=2 * stride, |
|
stride=stride, |
|
padding=stride // 2 + stride % 2, |
|
output_padding=stride % 2, |
|
), |
|
ResidualUnit(output_dim, dilation=1), |
|
ResidualUnit(output_dim, dilation=3), |
|
ResidualUnit(output_dim, dilation=9), |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
class FACodecDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=256, |
|
upsample_initial_channel=1536, |
|
ngf=32, |
|
up_ratios=(5, 5, 4, 2), |
|
vq_num_q_c=2, |
|
vq_num_q_p=1, |
|
vq_num_q_r=3, |
|
vq_dim=1024, |
|
vq_commit_weight=0.005, |
|
vq_weight_init=False, |
|
vq_full_commit_loss=False, |
|
codebook_dim=8, |
|
codebook_size_prosody=10, |
|
codebook_size_content=10, |
|
codebook_size_residual=10, |
|
quantizer_dropout=0.0, |
|
dropout_type="linear", |
|
use_gr_content_f0=False, |
|
use_gr_prosody_phone=False, |
|
use_gr_residual_f0=False, |
|
use_gr_residual_phone=False, |
|
use_gr_x_timbre=False, |
|
use_random_mask_residual=True, |
|
prob_random_mask_residual=0.75, |
|
): |
|
super().__init__() |
|
self.hop_length = np.prod(up_ratios) |
|
self.ngf = ngf |
|
self.up_ratios = up_ratios |
|
|
|
self.use_random_mask_residual = use_random_mask_residual |
|
self.prob_random_mask_residual = prob_random_mask_residual |
|
|
|
self.vq_num_q_p = vq_num_q_p |
|
self.vq_num_q_c = vq_num_q_c |
|
self.vq_num_q_r = vq_num_q_r |
|
|
|
self.codebook_size_prosody = codebook_size_prosody |
|
self.codebook_size_content = codebook_size_content |
|
self.codebook_size_residual = codebook_size_residual |
|
|
|
quantizer_class = ResidualVQ |
|
|
|
self.quantizer = nn.ModuleList() |
|
|
|
|
|
quantizer = quantizer_class( |
|
num_quantizers=vq_num_q_p, |
|
dim=vq_dim, |
|
codebook_size=codebook_size_prosody, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
quantizer_dropout=quantizer_dropout, |
|
dropout_type=dropout_type, |
|
) |
|
self.quantizer.append(quantizer) |
|
|
|
|
|
quantizer = quantizer_class( |
|
num_quantizers=vq_num_q_c, |
|
dim=vq_dim, |
|
codebook_size=codebook_size_content, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
quantizer_dropout=quantizer_dropout, |
|
dropout_type=dropout_type, |
|
) |
|
self.quantizer.append(quantizer) |
|
|
|
|
|
if self.vq_num_q_r > 0: |
|
quantizer = quantizer_class( |
|
num_quantizers=vq_num_q_r, |
|
dim=vq_dim, |
|
codebook_size=codebook_size_residual, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
quantizer_dropout=quantizer_dropout, |
|
dropout_type=dropout_type, |
|
) |
|
self.quantizer.append(quantizer) |
|
|
|
|
|
channels = upsample_initial_channel |
|
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] |
|
|
|
|
|
for i, stride in enumerate(up_ratios): |
|
input_dim = channels // 2**i |
|
output_dim = channels // 2 ** (i + 1) |
|
layers += [DecoderBlock(input_dim, output_dim, stride)] |
|
|
|
|
|
layers += [ |
|
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)), |
|
WNConv1d(output_dim, 1, kernel_size=7, padding=3), |
|
nn.Tanh(), |
|
] |
|
|
|
self.model = nn.Sequential(*layers) |
|
|
|
self.timbre_encoder = TransformerEncoder( |
|
enc_emb_tokens=None, |
|
encoder_layer=4, |
|
encoder_hidden=256, |
|
encoder_head=4, |
|
conv_filter_size=1024, |
|
conv_kernel_size=5, |
|
encoder_dropout=0.1, |
|
use_cln=False, |
|
) |
|
|
|
self.timbre_linear = nn.Linear(in_channels, in_channels * 2) |
|
self.timbre_linear.bias.data[:in_channels] = 1 |
|
self.timbre_linear.bias.data[in_channels:] = 0 |
|
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False) |
|
|
|
self.f0_predictor = CNNLSTM(in_channels, 1, 2) |
|
self.phone_predictor = CNNLSTM(in_channels, 5003, 1) |
|
|
|
self.use_gr_content_f0 = use_gr_content_f0 |
|
self.use_gr_prosody_phone = use_gr_prosody_phone |
|
self.use_gr_residual_f0 = use_gr_residual_f0 |
|
self.use_gr_residual_phone = use_gr_residual_phone |
|
self.use_gr_x_timbre = use_gr_x_timbre |
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_f0: |
|
self.res_f0_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) |
|
) |
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0: |
|
self.res_phone_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) |
|
) |
|
|
|
if self.use_gr_content_f0: |
|
self.content_f0_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) |
|
) |
|
|
|
if self.use_gr_prosody_phone: |
|
self.prosody_phone_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) |
|
) |
|
|
|
if self.use_gr_x_timbre: |
|
self.x_timbre_predictor = nn.Sequential( |
|
GradientReversal(alpha=1), |
|
CNNLSTM(in_channels, 245200, 1, global_pred=True), |
|
) |
|
|
|
self.reset_parameters() |
|
|
|
def quantize(self, x, n_quantizers=None): |
|
outs, qs, commit_loss, quantized_buf = 0, [], [], [] |
|
|
|
|
|
f0_input = x |
|
f0_quantizer = self.quantizer[0] |
|
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers) |
|
outs += out |
|
qs.append(q) |
|
quantized_buf.append(quantized.sum(0)) |
|
commit_loss.append(commit) |
|
|
|
|
|
phone_input = x |
|
phone_quantizer = self.quantizer[1] |
|
out, q, commit, quantized = phone_quantizer( |
|
phone_input, n_quantizers=n_quantizers |
|
) |
|
outs += out |
|
qs.append(q) |
|
quantized_buf.append(quantized.sum(0)) |
|
commit_loss.append(commit) |
|
|
|
|
|
if self.vq_num_q_r > 0: |
|
residual_quantizer = self.quantizer[2] |
|
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach() |
|
out, q, commit, quantized = residual_quantizer( |
|
residual_input, n_quantizers=n_quantizers |
|
) |
|
outs += out |
|
qs.append(q) |
|
quantized_buf.append(quantized.sum(0)) |
|
commit_loss.append(commit) |
|
|
|
qs = torch.cat(qs, dim=0) |
|
commit_loss = torch.cat(commit_loss, dim=0) |
|
return outs, qs, commit_loss, quantized_buf |
|
|
|
def forward( |
|
self, |
|
x, |
|
vq=True, |
|
get_vq=False, |
|
eval_vq=True, |
|
speaker_embedding=None, |
|
n_quantizers=None, |
|
quantized=None, |
|
): |
|
if get_vq: |
|
return self.quantizer.get_emb() |
|
if vq is True: |
|
if eval_vq: |
|
self.quantizer.eval() |
|
x_timbre = x |
|
outs, qs, commit_loss, quantized_buf = self.quantize( |
|
x, n_quantizers=n_quantizers |
|
) |
|
|
|
x_timbre = x_timbre.transpose(1, 2) |
|
x_timbre = self.timbre_encoder(x_timbre, None, None) |
|
x_timbre = x_timbre.transpose(1, 2) |
|
spk_embs = torch.mean(x_timbre, dim=2) |
|
return outs, qs, commit_loss, quantized_buf, spk_embs |
|
|
|
out = {} |
|
|
|
layer_0 = quantized[0] |
|
f0, uv = self.f0_predictor(layer_0) |
|
f0 = rearrange(f0, "... 1 -> ...") |
|
uv = rearrange(uv, "... 1 -> ...") |
|
|
|
layer_1 = quantized[1] |
|
(phone,) = self.phone_predictor(layer_1) |
|
|
|
out = {"f0": f0, "uv": uv, "phone": phone} |
|
|
|
if self.use_gr_prosody_phone: |
|
(prosody_phone,) = self.prosody_phone_predictor(layer_0) |
|
out["prosody_phone"] = prosody_phone |
|
|
|
if self.use_gr_content_f0: |
|
content_f0, content_uv = self.content_f0_predictor(layer_1) |
|
content_f0 = rearrange(content_f0, "... 1 -> ...") |
|
content_uv = rearrange(content_uv, "... 1 -> ...") |
|
out["content_f0"] = content_f0 |
|
out["content_uv"] = content_uv |
|
|
|
if self.vq_num_q_r > 0: |
|
layer_2 = quantized[2] |
|
|
|
if self.use_gr_residual_f0: |
|
res_f0, res_uv = self.res_f0_predictor(layer_2) |
|
res_f0 = rearrange(res_f0, "... 1 -> ...") |
|
res_uv = rearrange(res_uv, "... 1 -> ...") |
|
out["res_f0"] = res_f0 |
|
out["res_uv"] = res_uv |
|
|
|
if self.use_gr_residual_phone: |
|
(res_phone,) = self.res_phone_predictor(layer_2) |
|
out["res_phone"] = res_phone |
|
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
if self.vq_num_q_r > 0: |
|
if self.use_random_mask_residual: |
|
bsz = quantized[2].shape[0] |
|
res_mask = np.random.choice( |
|
[0, 1], |
|
size=bsz, |
|
p=[ |
|
self.prob_random_mask_residual, |
|
1 - self.prob_random_mask_residual, |
|
], |
|
) |
|
res_mask = ( |
|
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) |
|
) |
|
res_mask = res_mask.to( |
|
device=quantized[2].device, dtype=quantized[2].dtype |
|
) |
|
x = ( |
|
quantized[0].detach() |
|
+ quantized[1].detach() |
|
+ quantized[2] * res_mask |
|
) |
|
|
|
else: |
|
x = quantized[0].detach() + quantized[1].detach() + quantized[2] |
|
|
|
else: |
|
x = quantized[0].detach() + quantized[1].detach() |
|
|
|
|
|
if self.use_gr_x_timbre: |
|
(x_timbre,) = self.x_timbre_predictor(x) |
|
out["x_timbre"] = x_timbre |
|
|
|
x = x.transpose(1, 2) |
|
x = self.timbre_norm(x) |
|
x = x.transpose(1, 2) |
|
x = x * gamma + beta |
|
|
|
x = self.model(x) |
|
out["audio"] = x |
|
|
|
return out |
|
|
|
def vq2emb(self, vq, use_residual_code=True): |
|
|
|
self.quantizer = self.quantizer.eval() |
|
out = 0 |
|
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p]) |
|
out += self.quantizer[1].vq2emb( |
|
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c] |
|
) |
|
if self.vq_num_q_r > 0 and use_residual_code: |
|
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :]) |
|
return out |
|
|
|
def inference(self, x, speaker_embedding): |
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
x = x.transpose(1, 2) |
|
x = self.timbre_norm(x) |
|
x = x.transpose(1, 2) |
|
x = x * gamma + beta |
|
x = self.model(x) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
|
|
def _remove_weight_norm(m): |
|
try: |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
|
|
def _apply_weight_norm(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): |
|
torch.nn.utils.weight_norm(m) |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def reset_parameters(self): |
|
self.apply(init_weights) |
|
|
|
|
|
class FACodecRedecoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=256, |
|
upsample_initial_channel=1280, |
|
up_ratios=(5, 5, 4, 2), |
|
vq_num_q_c=2, |
|
vq_num_q_p=1, |
|
vq_num_q_r=3, |
|
vq_dim=256, |
|
codebook_size_prosody=10, |
|
codebook_size_content=10, |
|
codebook_size_residual=10, |
|
): |
|
super().__init__() |
|
self.hop_length = np.prod(up_ratios) |
|
self.up_ratios = up_ratios |
|
|
|
self.vq_num_q_p = vq_num_q_p |
|
self.vq_num_q_c = vq_num_q_c |
|
self.vq_num_q_r = vq_num_q_r |
|
|
|
self.vq_dim = vq_dim |
|
|
|
self.codebook_size_prosody = codebook_size_prosody |
|
self.codebook_size_content = codebook_size_content |
|
self.codebook_size_residual = codebook_size_residual |
|
|
|
self.prosody_embs = nn.ModuleList() |
|
for i in range(self.vq_num_q_p): |
|
emb_tokens = nn.Embedding( |
|
num_embeddings=2**self.codebook_size_prosody, |
|
embedding_dim=self.vq_dim, |
|
) |
|
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5) |
|
self.prosody_embs.append(emb_tokens) |
|
self.content_embs = nn.ModuleList() |
|
for i in range(self.vq_num_q_c): |
|
emb_tokens = nn.Embedding( |
|
num_embeddings=2**self.codebook_size_content, |
|
embedding_dim=self.vq_dim, |
|
) |
|
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5) |
|
self.content_embs.append(emb_tokens) |
|
self.residual_embs = nn.ModuleList() |
|
for i in range(self.vq_num_q_r): |
|
emb_tokens = nn.Embedding( |
|
num_embeddings=2**self.codebook_size_residual, |
|
embedding_dim=self.vq_dim, |
|
) |
|
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5) |
|
self.residual_embs.append(emb_tokens) |
|
|
|
|
|
channels = upsample_initial_channel |
|
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] |
|
|
|
|
|
for i, stride in enumerate(up_ratios): |
|
input_dim = channels // 2**i |
|
output_dim = channels // 2 ** (i + 1) |
|
layers += [DecoderBlock(input_dim, output_dim, stride)] |
|
|
|
|
|
layers += [ |
|
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)), |
|
WNConv1d(output_dim, 1, kernel_size=7, padding=3), |
|
nn.Tanh(), |
|
] |
|
|
|
self.model = nn.Sequential(*layers) |
|
|
|
self.timbre_linear = nn.Linear(in_channels, in_channels * 2) |
|
self.timbre_linear.bias.data[:in_channels] = 1 |
|
self.timbre_linear.bias.data[in_channels:] = 0 |
|
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False) |
|
|
|
self.timbre_cond_prosody_enc = TransformerEncoder( |
|
enc_emb_tokens=None, |
|
encoder_layer=4, |
|
encoder_hidden=256, |
|
encoder_head=4, |
|
conv_filter_size=1024, |
|
conv_kernel_size=5, |
|
encoder_dropout=0.1, |
|
use_cln=True, |
|
cfg=None, |
|
) |
|
|
|
def forward( |
|
self, |
|
vq, |
|
speaker_embedding, |
|
use_residual_code=False, |
|
): |
|
|
|
x = 0 |
|
|
|
x_p = 0 |
|
for i in range(self.vq_num_q_p): |
|
x_p = x_p + self.prosody_embs[i](vq[i]) |
|
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_p.shape[1], -1) |
|
x_p = self.timbre_cond_prosody_enc( |
|
x_p, key_padding_mask=None, condition=spk_cond |
|
) |
|
x = x + x_p |
|
|
|
x_c = 0 |
|
for i in range(self.vq_num_q_c): |
|
x_c = x_c + self.content_embs[i](vq[self.vq_num_q_p + i]) |
|
|
|
x = x + x_c |
|
|
|
if use_residual_code: |
|
|
|
x_r = 0 |
|
for i in range(self.vq_num_q_r): |
|
x_r = x_r + self.residual_embs[i]( |
|
vq[self.vq_num_q_p + self.vq_num_q_c + i] |
|
) |
|
x = x + x_r |
|
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
x = x.transpose(1, 2) |
|
x = self.timbre_norm(x) |
|
x = x.transpose(1, 2) |
|
x = x * gamma + beta |
|
x = self.model(x) |
|
|
|
return x |
|
|
|
def vq2emb(self, vq, speaker_embedding, use_residual=True): |
|
|
|
out = 0 |
|
|
|
x_t = 0 |
|
for i in range(self.vq_num_q_p): |
|
x_t += self.prosody_embs[i](vq[i]) |
|
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_t.shape[1], -1) |
|
x_t = self.timbre_cond_prosody_enc( |
|
x_t, key_padding_mask=None, condition=spk_cond |
|
) |
|
|
|
|
|
out += x_t |
|
|
|
|
|
for i in range(self.vq_num_q_c): |
|
out += self.content_embs[i](vq[self.vq_num_q_p + i]) |
|
|
|
|
|
if use_residual: |
|
for i in range(self.vq_num_q_r): |
|
out += self.residual_embs[i](vq[self.vq_num_q_p + self.vq_num_q_c + i]) |
|
|
|
out = out.transpose(1, 2) |
|
return out |
|
|
|
def inference(self, x, speaker_embedding): |
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
x = x.transpose(1, 2) |
|
x = self.timbre_norm(x) |
|
x = x.transpose(1, 2) |
|
x = x * gamma + beta |
|
x = self.model(x) |
|
return x |
|
|
|
|
|
class FACodecEncoderV2(nn.Module): |
|
def __init__( |
|
self, |
|
ngf=32, |
|
up_ratios=(2, 4, 5, 5), |
|
out_channels=1024, |
|
): |
|
super().__init__() |
|
self.hop_length = np.prod(up_ratios) |
|
self.up_ratios = up_ratios |
|
|
|
|
|
d_model = ngf |
|
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)] |
|
|
|
|
|
for stride in up_ratios: |
|
d_model *= 2 |
|
self.block += [EncoderBlock(d_model, stride=stride)] |
|
|
|
|
|
self.block += [ |
|
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)), |
|
WNConv1d(d_model, out_channels, kernel_size=3, padding=1), |
|
] |
|
|
|
|
|
self.block = nn.Sequential(*self.block) |
|
self.enc_dim = d_model |
|
|
|
self.mel_transform = MelSpectrogram( |
|
n_fft=1024, |
|
num_mels=80, |
|
sampling_rate=16000, |
|
hop_size=200, |
|
win_size=800, |
|
fmin=0, |
|
fmax=8000, |
|
) |
|
|
|
self.reset_parameters() |
|
|
|
def forward(self, x): |
|
out = self.block(x) |
|
return out |
|
|
|
def inference(self, x): |
|
return self.block(x) |
|
|
|
def get_prosody_feature(self, x): |
|
return self.mel_transform(x.squeeze(1))[:, :20, :] |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
|
|
def _remove_weight_norm(m): |
|
try: |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
|
|
def _apply_weight_norm(m): |
|
if isinstance(m, nn.Conv1d): |
|
torch.nn.utils.weight_norm(m) |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def reset_parameters(self): |
|
self.apply(init_weights) |
|
|
|
|
|
class FACodecDecoderV2(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=256, |
|
upsample_initial_channel=1536, |
|
ngf=32, |
|
up_ratios=(5, 5, 4, 2), |
|
vq_num_q_c=2, |
|
vq_num_q_p=1, |
|
vq_num_q_r=3, |
|
vq_dim=1024, |
|
vq_commit_weight=0.005, |
|
vq_weight_init=False, |
|
vq_full_commit_loss=False, |
|
codebook_dim=8, |
|
codebook_size_prosody=10, |
|
codebook_size_content=10, |
|
codebook_size_residual=10, |
|
quantizer_dropout=0.0, |
|
dropout_type="linear", |
|
use_gr_content_f0=False, |
|
use_gr_prosody_phone=False, |
|
use_gr_residual_f0=False, |
|
use_gr_residual_phone=False, |
|
use_gr_x_timbre=False, |
|
use_random_mask_residual=True, |
|
prob_random_mask_residual=0.75, |
|
): |
|
super().__init__() |
|
self.hop_length = np.prod(up_ratios) |
|
self.ngf = ngf |
|
self.up_ratios = up_ratios |
|
|
|
self.use_random_mask_residual = use_random_mask_residual |
|
self.prob_random_mask_residual = prob_random_mask_residual |
|
|
|
self.vq_num_q_p = vq_num_q_p |
|
self.vq_num_q_c = vq_num_q_c |
|
self.vq_num_q_r = vq_num_q_r |
|
|
|
self.codebook_size_prosody = codebook_size_prosody |
|
self.codebook_size_content = codebook_size_content |
|
self.codebook_size_residual = codebook_size_residual |
|
|
|
quantizer_class = ResidualVQ |
|
|
|
self.quantizer = nn.ModuleList() |
|
|
|
|
|
quantizer = quantizer_class( |
|
num_quantizers=vq_num_q_p, |
|
dim=vq_dim, |
|
codebook_size=codebook_size_prosody, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
quantizer_dropout=quantizer_dropout, |
|
dropout_type=dropout_type, |
|
) |
|
self.quantizer.append(quantizer) |
|
|
|
|
|
quantizer = quantizer_class( |
|
num_quantizers=vq_num_q_c, |
|
dim=vq_dim, |
|
codebook_size=codebook_size_content, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
quantizer_dropout=quantizer_dropout, |
|
dropout_type=dropout_type, |
|
) |
|
self.quantizer.append(quantizer) |
|
|
|
|
|
if self.vq_num_q_r > 0: |
|
quantizer = quantizer_class( |
|
num_quantizers=vq_num_q_r, |
|
dim=vq_dim, |
|
codebook_size=codebook_size_residual, |
|
codebook_dim=codebook_dim, |
|
threshold_ema_dead_code=2, |
|
commitment=vq_commit_weight, |
|
weight_init=vq_weight_init, |
|
full_commit_loss=vq_full_commit_loss, |
|
quantizer_dropout=quantizer_dropout, |
|
dropout_type=dropout_type, |
|
) |
|
self.quantizer.append(quantizer) |
|
|
|
|
|
channels = upsample_initial_channel |
|
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)] |
|
|
|
|
|
for i, stride in enumerate(up_ratios): |
|
input_dim = channels // 2**i |
|
output_dim = channels // 2 ** (i + 1) |
|
layers += [DecoderBlock(input_dim, output_dim, stride)] |
|
|
|
|
|
layers += [ |
|
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)), |
|
WNConv1d(output_dim, 1, kernel_size=7, padding=3), |
|
nn.Tanh(), |
|
] |
|
|
|
self.model = nn.Sequential(*layers) |
|
|
|
self.timbre_encoder = TransformerEncoder( |
|
enc_emb_tokens=None, |
|
encoder_layer=4, |
|
encoder_hidden=256, |
|
encoder_head=4, |
|
conv_filter_size=1024, |
|
conv_kernel_size=5, |
|
encoder_dropout=0.1, |
|
use_cln=False, |
|
) |
|
|
|
self.timbre_linear = nn.Linear(in_channels, in_channels * 2) |
|
self.timbre_linear.bias.data[:in_channels] = 1 |
|
self.timbre_linear.bias.data[in_channels:] = 0 |
|
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False) |
|
|
|
self.f0_predictor = CNNLSTM(in_channels, 1, 2) |
|
self.phone_predictor = CNNLSTM(in_channels, 5003, 1) |
|
|
|
self.use_gr_content_f0 = use_gr_content_f0 |
|
self.use_gr_prosody_phone = use_gr_prosody_phone |
|
self.use_gr_residual_f0 = use_gr_residual_f0 |
|
self.use_gr_residual_phone = use_gr_residual_phone |
|
self.use_gr_x_timbre = use_gr_x_timbre |
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_f0: |
|
self.res_f0_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) |
|
) |
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0: |
|
self.res_phone_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) |
|
) |
|
|
|
if self.use_gr_content_f0: |
|
self.content_f0_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2) |
|
) |
|
|
|
if self.use_gr_prosody_phone: |
|
self.prosody_phone_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1) |
|
) |
|
|
|
if self.use_gr_x_timbre: |
|
self.x_timbre_predictor = nn.Sequential( |
|
GradientReversal(alpha=1), |
|
CNNLSTM(in_channels, 245200, 1, global_pred=True), |
|
) |
|
|
|
self.melspec_linear = nn.Linear(20, 256) |
|
self.melspec_encoder = TransformerEncoder( |
|
enc_emb_tokens=None, |
|
encoder_layer=4, |
|
encoder_hidden=256, |
|
encoder_head=4, |
|
conv_filter_size=1024, |
|
conv_kernel_size=5, |
|
encoder_dropout=0.1, |
|
use_cln=False, |
|
cfg=None, |
|
) |
|
|
|
self.reset_parameters() |
|
|
|
def quantize(self, x, prosody_feature, n_quantizers=None): |
|
outs, qs, commit_loss, quantized_buf = 0, [], [], [] |
|
|
|
|
|
f0_input = prosody_feature.transpose(1, 2) |
|
f0_input = self.melspec_linear(f0_input) |
|
f0_input = self.melspec_encoder(f0_input, None, None) |
|
f0_input = f0_input.transpose(1, 2) |
|
f0_quantizer = self.quantizer[0] |
|
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers) |
|
outs += out |
|
qs.append(q) |
|
quantized_buf.append(quantized.sum(0)) |
|
commit_loss.append(commit) |
|
|
|
|
|
phone_input = x |
|
phone_quantizer = self.quantizer[1] |
|
out, q, commit, quantized = phone_quantizer( |
|
phone_input, n_quantizers=n_quantizers |
|
) |
|
outs += out |
|
qs.append(q) |
|
quantized_buf.append(quantized.sum(0)) |
|
commit_loss.append(commit) |
|
|
|
|
|
if self.vq_num_q_r > 0: |
|
residual_quantizer = self.quantizer[2] |
|
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach() |
|
out, q, commit, quantized = residual_quantizer( |
|
residual_input, n_quantizers=n_quantizers |
|
) |
|
outs += out |
|
qs.append(q) |
|
quantized_buf.append(quantized.sum(0)) |
|
commit_loss.append(commit) |
|
|
|
qs = torch.cat(qs, dim=0) |
|
commit_loss = torch.cat(commit_loss, dim=0) |
|
return outs, qs, commit_loss, quantized_buf |
|
|
|
def forward( |
|
self, |
|
x, |
|
prosody_feature, |
|
vq=True, |
|
get_vq=False, |
|
eval_vq=True, |
|
speaker_embedding=None, |
|
n_quantizers=None, |
|
quantized=None, |
|
): |
|
if get_vq: |
|
return self.quantizer.get_emb() |
|
if vq is True: |
|
if eval_vq: |
|
self.quantizer.eval() |
|
x_timbre = x |
|
outs, qs, commit_loss, quantized_buf = self.quantize( |
|
x, prosody_feature, n_quantizers=n_quantizers |
|
) |
|
|
|
x_timbre = x_timbre.transpose(1, 2) |
|
x_timbre = self.timbre_encoder(x_timbre, None, None) |
|
x_timbre = x_timbre.transpose(1, 2) |
|
spk_embs = torch.mean(x_timbre, dim=2) |
|
return outs, qs, commit_loss, quantized_buf, spk_embs |
|
|
|
out = {} |
|
|
|
layer_0 = quantized[0] |
|
f0, uv = self.f0_predictor(layer_0) |
|
f0 = rearrange(f0, "... 1 -> ...") |
|
uv = rearrange(uv, "... 1 -> ...") |
|
|
|
layer_1 = quantized[1] |
|
(phone,) = self.phone_predictor(layer_1) |
|
|
|
out = {"f0": f0, "uv": uv, "phone": phone} |
|
|
|
if self.use_gr_prosody_phone: |
|
(prosody_phone,) = self.prosody_phone_predictor(layer_0) |
|
out["prosody_phone"] = prosody_phone |
|
|
|
if self.use_gr_content_f0: |
|
content_f0, content_uv = self.content_f0_predictor(layer_1) |
|
content_f0 = rearrange(content_f0, "... 1 -> ...") |
|
content_uv = rearrange(content_uv, "... 1 -> ...") |
|
out["content_f0"] = content_f0 |
|
out["content_uv"] = content_uv |
|
|
|
if self.vq_num_q_r > 0: |
|
layer_2 = quantized[2] |
|
|
|
if self.use_gr_residual_f0: |
|
res_f0, res_uv = self.res_f0_predictor(layer_2) |
|
res_f0 = rearrange(res_f0, "... 1 -> ...") |
|
res_uv = rearrange(res_uv, "... 1 -> ...") |
|
out["res_f0"] = res_f0 |
|
out["res_uv"] = res_uv |
|
|
|
if self.use_gr_residual_phone: |
|
(res_phone,) = self.res_phone_predictor(layer_2) |
|
out["res_phone"] = res_phone |
|
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
if self.vq_num_q_r > 0: |
|
if self.use_random_mask_residual: |
|
bsz = quantized[2].shape[0] |
|
res_mask = np.random.choice( |
|
[0, 1], |
|
size=bsz, |
|
p=[ |
|
self.prob_random_mask_residual, |
|
1 - self.prob_random_mask_residual, |
|
], |
|
) |
|
res_mask = ( |
|
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) |
|
) |
|
res_mask = res_mask.to( |
|
device=quantized[2].device, dtype=quantized[2].dtype |
|
) |
|
x = ( |
|
quantized[0].detach() |
|
+ quantized[1].detach() |
|
+ quantized[2] * res_mask |
|
) |
|
|
|
else: |
|
x = quantized[0].detach() + quantized[1].detach() + quantized[2] |
|
|
|
else: |
|
x = quantized[0].detach() + quantized[1].detach() |
|
|
|
|
|
if self.use_gr_x_timbre: |
|
(x_timbre,) = self.x_timbre_predictor(x) |
|
out["x_timbre"] = x_timbre |
|
|
|
x = x.transpose(1, 2) |
|
x = self.timbre_norm(x) |
|
x = x.transpose(1, 2) |
|
x = x * gamma + beta |
|
|
|
x = self.model(x) |
|
out["audio"] = x |
|
|
|
return out |
|
|
|
def vq2emb(self, vq, use_residual=True): |
|
|
|
self.quantizer = self.quantizer.eval() |
|
out = 0 |
|
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p]) |
|
out += self.quantizer[1].vq2emb( |
|
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c] |
|
) |
|
if self.vq_num_q_r > 0 and use_residual: |
|
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :]) |
|
return out |
|
|
|
def inference(self, x, speaker_embedding): |
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
x = x.transpose(1, 2) |
|
x = self.timbre_norm(x) |
|
x = x.transpose(1, 2) |
|
x = x * gamma + beta |
|
x = self.model(x) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization module from all of the layers.""" |
|
|
|
def _remove_weight_norm(m): |
|
try: |
|
torch.nn.utils.remove_weight_norm(m) |
|
except ValueError: |
|
return |
|
|
|
self.apply(_remove_weight_norm) |
|
|
|
def apply_weight_norm(self): |
|
"""Apply weight normalization module from all of the layers.""" |
|
|
|
def _apply_weight_norm(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d): |
|
torch.nn.utils.weight_norm(m) |
|
|
|
self.apply(_apply_weight_norm) |
|
|
|
def reset_parameters(self): |
|
self.apply(init_weights) |
|
|