|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import os |
|
import glob |
|
from tqdm import tqdm |
|
import torchaudio |
|
import pandas as pd |
|
from glob import glob |
|
from collections import defaultdict |
|
|
|
from utils.io import save_audio |
|
from utils.util import has_existed |
|
from preprocessors import GOLDEN_TEST_SAMPLES |
|
|
|
|
|
def save_utterance(output_file, waveform, fs, start, end, overlap=0.1): |
|
""" |
|
waveform: [#channel, audio_len] |
|
start, end, overlap: seconds |
|
""" |
|
start = int((start - overlap) * fs) |
|
end = int((end + overlap) * fs) |
|
utterance = waveform[:, start:end] |
|
save_audio(output_file, utterance, fs) |
|
|
|
|
|
def split_to_utterances(language_dir, output_dir): |
|
print("Splitting to utterances for {}...".format(language_dir)) |
|
wav_dir = os.path.join(language_dir, "wav") |
|
phoneme_dir = os.path.join(language_dir, "txt") |
|
annot_dir = os.path.join(language_dir, "csv") |
|
|
|
pitches = set() |
|
for wav_file in tqdm(glob("{}/*.wav".format(wav_dir))): |
|
|
|
song_name = wav_file.split("/")[-1].split(".")[0] |
|
waveform, fs = torchaudio.load(wav_file) |
|
|
|
|
|
phoneme_file = os.path.join(phoneme_dir, "{}.txt".format(song_name)) |
|
with open(phoneme_file, "r") as f: |
|
lines = f.readlines() |
|
utterances = [l.strip().split() for l in lines] |
|
utterances = [utt for utt in utterances if len(utt) > 0] |
|
|
|
|
|
annot_file = os.path.join(annot_dir, "{}.csv".format(song_name)) |
|
annot_df = pd.read_csv(annot_file) |
|
pitches = pitches.union(set(annot_df["pitch"])) |
|
starts = annot_df["start"].tolist() |
|
ends = annot_df["end"].tolist() |
|
syllables = annot_df["syllable"].tolist() |
|
|
|
|
|
curr = 0 |
|
for i, phones in enumerate(utterances): |
|
sz = len(phones) |
|
assert phones[0] == syllables[curr] |
|
assert phones[-1] == syllables[curr + sz - 1] |
|
|
|
s = starts[curr] |
|
e = ends[curr + sz - 1] |
|
curr += sz |
|
|
|
save_dir = os.path.join(output_dir, song_name) |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
output_file = os.path.join(save_dir, "{:04d}.wav".format(i)) |
|
save_utterance(output_file, waveform, fs, start=s, end=e) |
|
|
|
|
|
def _main(dataset_path): |
|
""" |
|
Split to utterances |
|
""" |
|
utterance_dir = os.path.join(dataset_path, "utterances") |
|
|
|
for lang in ["english", "korean"]: |
|
split_to_utterances(os.path.join(dataset_path, lang), utterance_dir) |
|
|
|
|
|
def get_test_songs(): |
|
golden_samples = GOLDEN_TEST_SAMPLES["csd"] |
|
|
|
golden_songs = [s.split("_")[:2] for s in golden_samples] |
|
|
|
return golden_songs |
|
|
|
|
|
def csd_statistics(data_dir): |
|
languages = [] |
|
songs = [] |
|
languages2songs = defaultdict(lambda: defaultdict(list)) |
|
|
|
folder_infos = glob(data_dir + "/*") |
|
|
|
for folder_info in folder_infos: |
|
folder_info_split = folder_info.split("/")[-1] |
|
|
|
language = folder_info_split[:2] |
|
song = folder_info_split[2:] |
|
|
|
languages.append(language) |
|
songs.append(song) |
|
|
|
utts = glob(folder_info + "/*") |
|
|
|
for utt in utts: |
|
uid = utt.split("/")[-1].split(".")[0] |
|
languages2songs[language][song].append(uid) |
|
|
|
unique_languages = list(set(languages)) |
|
unique_songs = list(set(songs)) |
|
unique_languages.sort() |
|
unique_songs.sort() |
|
|
|
print( |
|
"csd: {} languages, {} utterances ({} unique songs)".format( |
|
len(unique_languages), len(songs), len(unique_songs) |
|
) |
|
) |
|
print("Languages: \n{}".format("\t".join(unique_languages))) |
|
return languages2songs |
|
|
|
|
|
def main(output_path, dataset_path): |
|
print("-" * 10) |
|
print("Preparing test samples for csd...\n") |
|
|
|
if not os.path.exists(os.path.join(dataset_path, "utterances")): |
|
print("Spliting into utterances...\n") |
|
_main(dataset_path) |
|
|
|
save_dir = os.path.join(output_path, "csd") |
|
train_output_file = os.path.join(save_dir, "train.json") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
if has_existed(test_output_file): |
|
return |
|
|
|
|
|
csd_path = os.path.join(dataset_path, "utterances") |
|
|
|
language2songs = csd_statistics(csd_path) |
|
test_songs = get_test_songs() |
|
|
|
|
|
train = [] |
|
test = [] |
|
|
|
train_index_count = 0 |
|
test_index_count = 0 |
|
|
|
train_total_duration = 0 |
|
test_total_duration = 0 |
|
|
|
for language, songs in tqdm(language2songs.items()): |
|
song_names = list(songs.keys()) |
|
|
|
for chosen_song in song_names: |
|
for chosen_uid in songs[chosen_song]: |
|
res = { |
|
"Dataset": "csd", |
|
"Singer": "Female1_{}".format(language), |
|
"Uid": "{}_{}_{}".format(language, chosen_song, chosen_uid), |
|
} |
|
res["Path"] = "{}{}/{}.wav".format(language, chosen_song, chosen_uid) |
|
res["Path"] = os.path.join(csd_path, res["Path"]) |
|
assert os.path.exists(res["Path"]) |
|
|
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
res["Duration"] = duration |
|
|
|
if [language, chosen_song] in test_songs: |
|
res["index"] = test_index_count |
|
test_total_duration += duration |
|
test.append(res) |
|
test_index_count += 1 |
|
else: |
|
res["index"] = train_index_count |
|
train_total_duration += duration |
|
train.append(res) |
|
train_index_count += 1 |
|
|
|
print("#Train = {}, #Test = {}".format(len(train), len(test))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
with open(train_output_file, "w") as f: |
|
json.dump(train, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
|