|
|
|
|
|
|
|
|
|
|
|
import os |
|
import json |
|
import os |
|
from tqdm import tqdm |
|
import torchaudio |
|
from glob import glob |
|
from collections import defaultdict |
|
|
|
from utils.util import has_existed |
|
from utils.io import save_audio |
|
from utils.audio_slicer import Slicer |
|
from preprocessors import GOLDEN_TEST_SAMPLES |
|
|
|
|
|
def split_to_utterances(language_dir, output_dir): |
|
print("Splitting to utterances for {}...".format(language_dir)) |
|
|
|
for wav_file in tqdm(glob("{}/*/*".format(language_dir))): |
|
|
|
singer_name, song_name = wav_file.split("/")[-2:] |
|
song_name = song_name.split(".")[0] |
|
waveform, fs = torchaudio.load(wav_file) |
|
|
|
|
|
slicer = Slicer(sr=fs, threshold=-30.0, max_sil_kept=3000) |
|
chunks = slicer.slice(waveform) |
|
|
|
for i, chunk in enumerate(chunks): |
|
save_dir = os.path.join(output_dir, singer_name, song_name) |
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
output_file = os.path.join(save_dir, "{:04d}.wav".format(i)) |
|
save_audio(output_file, chunk, fs) |
|
|
|
|
|
def _main(dataset_path): |
|
""" |
|
Split to utterances |
|
""" |
|
utterance_dir = os.path.join(dataset_path, "utterances") |
|
|
|
for lang in ["chinese", "western"]: |
|
split_to_utterances(os.path.join(dataset_path, lang), utterance_dir) |
|
|
|
|
|
def get_test_songs(): |
|
golden_samples = GOLDEN_TEST_SAMPLES["opera"] |
|
|
|
golden_songs = [s.split("#")[:2] for s in golden_samples] |
|
|
|
return golden_songs |
|
|
|
|
|
def opera_statistics(data_dir): |
|
singers = [] |
|
songs = [] |
|
singers2songs = defaultdict(lambda: defaultdict(list)) |
|
|
|
singer_infos = glob(data_dir + "/*") |
|
|
|
for singer_info in singer_infos: |
|
singer = singer_info.split("/")[-1] |
|
|
|
song_infos = glob(singer_info + "/*") |
|
|
|
for song_info in song_infos: |
|
song = song_info.split("/")[-1] |
|
|
|
singers.append(singer) |
|
songs.append(song) |
|
|
|
utts = glob(song_info + "/*.wav") |
|
|
|
for utt in utts: |
|
uid = utt.split("/")[-1].split(".")[0] |
|
singers2songs[singer][song].append(uid) |
|
|
|
unique_singers = list(set(singers)) |
|
unique_songs = list(set(songs)) |
|
unique_singers.sort() |
|
unique_songs.sort() |
|
|
|
print( |
|
"opera: {} singers, {} utterances ({} unique songs)".format( |
|
len(unique_singers), len(songs), len(unique_songs) |
|
) |
|
) |
|
print("Singers: \n{}".format("\t".join(unique_singers))) |
|
return singers2songs, unique_singers |
|
|
|
|
|
def main(output_path, dataset_path): |
|
print("-" * 10) |
|
print("Preparing test samples for opera...\n") |
|
|
|
if not os.path.exists(os.path.join(dataset_path, "utterances")): |
|
print("Spliting into utterances...\n") |
|
_main(dataset_path) |
|
|
|
save_dir = os.path.join(output_path, "opera") |
|
os.makedirs(save_dir, exist_ok=True) |
|
train_output_file = os.path.join(save_dir, "train.json") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
singer_dict_file = os.path.join(save_dir, "singers.json") |
|
utt2singer_file = os.path.join(save_dir, "utt2singer") |
|
if ( |
|
has_existed(train_output_file) |
|
and has_existed(test_output_file) |
|
and has_existed(singer_dict_file) |
|
and has_existed(utt2singer_file) |
|
): |
|
return |
|
utt2singer = open(utt2singer_file, "w") |
|
|
|
|
|
opera_path = os.path.join(dataset_path, "utterances") |
|
|
|
singers2songs, unique_singers = opera_statistics(opera_path) |
|
test_songs = get_test_songs() |
|
|
|
|
|
train = [] |
|
test = [] |
|
|
|
train_index_count = 0 |
|
test_index_count = 0 |
|
|
|
train_total_duration = 0 |
|
test_total_duration = 0 |
|
|
|
for singer, songs in tqdm(singers2songs.items()): |
|
song_names = list(songs.keys()) |
|
|
|
for chosen_song in song_names: |
|
for chosen_uid in songs[chosen_song]: |
|
res = { |
|
"Dataset": "opera", |
|
"Singer": singer, |
|
"Uid": "{}#{}#{}".format(singer, chosen_song, chosen_uid), |
|
} |
|
res["Path"] = "{}/{}/{}.wav".format(singer, chosen_song, chosen_uid) |
|
res["Path"] = os.path.join(opera_path, res["Path"]) |
|
assert os.path.exists(res["Path"]) |
|
|
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
res["Duration"] = duration |
|
|
|
if duration <= 1e-8: |
|
continue |
|
|
|
if ([singer, chosen_song]) in test_songs: |
|
res["index"] = test_index_count |
|
test_total_duration += duration |
|
test.append(res) |
|
test_index_count += 1 |
|
else: |
|
res["index"] = train_index_count |
|
train_total_duration += duration |
|
train.append(res) |
|
train_index_count += 1 |
|
|
|
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"])) |
|
|
|
print("#Train = {}, #Test = {}".format(len(train), len(test))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
with open(train_output_file, "w") as f: |
|
json.dump(train, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
|
|
|
|
singer_lut = {name: i for i, name in enumerate(unique_singers)} |
|
with open(singer_dict_file, "w") as f: |
|
json.dump(singer_lut, f, indent=4, ensure_ascii=False) |
|
|