|
|
|
|
|
|
|
|
|
|
|
import os |
|
from tqdm import tqdm |
|
import glob |
|
import json |
|
import torchaudio |
|
|
|
from utils.util import has_existed |
|
from utils.io import save_audio |
|
|
|
|
|
def get_splitted_utterances( |
|
raw_wav_dir, trimed_wav_dir, n_utterance_splits, overlapping |
|
): |
|
res = [] |
|
raw_song_files = glob.glob( |
|
os.path.join(raw_wav_dir, "**/pjs*_song.wav"), recursive=True |
|
) |
|
trimed_song_files = glob.glob( |
|
os.path.join(trimed_wav_dir, "**/*.wav"), recursive=True |
|
) |
|
|
|
if len(raw_song_files) * n_utterance_splits == len(trimed_song_files): |
|
print("Splitted done...") |
|
for wav_file in tqdm(trimed_song_files): |
|
uid = wav_file.split("/")[-1].split(".")[0] |
|
utt = {"Dataset": "pjs", "Singer": "male1", "Uid": uid, "Path": wav_file} |
|
|
|
waveform, sample_rate = torchaudio.load(wav_file) |
|
duration = waveform.size(-1) / sample_rate |
|
utt["Duration"] = duration |
|
|
|
res.append(utt) |
|
|
|
else: |
|
for wav_file in tqdm(raw_song_files): |
|
song_id = wav_file.split("/")[-1].split(".")[0] |
|
|
|
waveform, sample_rate = torchaudio.load(wav_file) |
|
trimed_waveform = torchaudio.functional.vad(waveform, sample_rate) |
|
trimed_waveform = torchaudio.functional.vad( |
|
trimed_waveform.flip(dims=[1]), sample_rate |
|
).flip(dims=[1]) |
|
|
|
audio_len = trimed_waveform.size(-1) |
|
lapping_len = overlapping * sample_rate |
|
|
|
for i in range(n_utterance_splits): |
|
start = i * audio_len // 3 |
|
end = start + audio_len // 3 + lapping_len |
|
splitted_waveform = trimed_waveform[:, start:end] |
|
|
|
utt = { |
|
"Dataset": "pjs", |
|
"Singer": "male1", |
|
"Uid": "{}_{}".format(song_id, i), |
|
} |
|
|
|
|
|
duration = splitted_waveform.size(-1) / sample_rate |
|
utt["Duration"] = duration |
|
|
|
|
|
splitted_waveform_file = os.path.join( |
|
trimed_wav_dir, "{}.wav".format(utt["Uid"]) |
|
) |
|
save_audio(splitted_waveform_file, splitted_waveform, sample_rate) |
|
|
|
|
|
utt["Path"] = splitted_waveform_file |
|
|
|
res.append(utt) |
|
|
|
res = sorted(res, key=lambda x: x["Uid"]) |
|
return res |
|
|
|
|
|
def main(output_path, dataset_path, n_utterance_splits=3, overlapping=1): |
|
""" |
|
1. Split one raw utterance to three splits (since some samples are too long) |
|
2. Overlapping of ajacent splits is 1 s |
|
""" |
|
print("-" * 10) |
|
print("Preparing training dataset for PJS...") |
|
|
|
save_dir = os.path.join(output_path, "pjs") |
|
raw_wav_dir = os.path.join(dataset_path, "PJS_corpus_ver1.1") |
|
|
|
|
|
trimed_wav_dir = os.path.join(dataset_path, "trim") |
|
os.makedirs(trimed_wav_dir, exist_ok=True) |
|
|
|
|
|
utterances = get_splitted_utterances( |
|
raw_wav_dir, trimed_wav_dir, n_utterance_splits, overlapping |
|
) |
|
total_uids = [utt["Uid"] for utt in utterances] |
|
|
|
|
|
n_test_songs = 3 |
|
test_uids = [] |
|
for i in range(1, n_test_songs + 1): |
|
test_uids += [ |
|
"pjs00{}_song_{}".format(i, split_id) |
|
for split_id in range(n_utterance_splits) |
|
] |
|
|
|
|
|
train_uids = [uid for uid in total_uids if uid not in test_uids] |
|
|
|
for dataset_type in ["train", "test"]: |
|
output_file = os.path.join(save_dir, "{}.json".format(dataset_type)) |
|
if has_existed(output_file): |
|
continue |
|
|
|
uids = eval("{}_uids".format(dataset_type)) |
|
res = [utt for utt in utterances if utt["Uid"] in uids] |
|
for i in range(len(res)): |
|
res[i]["index"] = i |
|
|
|
time = sum([utt["Duration"] for utt in res]) |
|
print( |
|
"{}, Total size: {}, Total Duraions = {} s = {:.2f} hour\n".format( |
|
dataset_type, len(res), time, time / 3600 |
|
) |
|
) |
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
with open(output_file, "w") as f: |
|
json.dump(res, f, indent=4, ensure_ascii=False) |
|
|