# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import librosa import numpy as np from torchmetrics import ScaleInvariantSignalNoiseRatio def extract_si_snr(audio_ref, audio_deg, **kwargs): # Load hyperparameters kwargs = kwargs["kwargs"] fs = kwargs["fs"] method = kwargs["method"] si_snr = ScaleInvariantSignalNoiseRatio() if fs != None: audio_ref, _ = librosa.load(audio_ref, sr=fs) audio_deg, _ = librosa.load(audio_deg, sr=fs) else: audio_ref, fs = librosa.load(audio_ref) audio_deg, fs = librosa.load(audio_deg) if len(audio_ref) != len(audio_deg): if method == "cut": length = min(len(audio_ref), len(audio_deg)) audio_ref = audio_ref[:length] audio_deg = audio_deg[:length] elif method == "dtw": _, wp = librosa.sequence.dtw(audio_ref, audio_deg, backtrack=True) audio_ref_new = [] audio_deg_new = [] for i in range(wp.shape[0]): ref_index = wp[i][0] deg_index = wp[i][1] audio_ref_new.append(audio_ref[ref_index]) audio_deg_new.append(audio_deg[deg_index]) audio_ref = np.array(audio_ref_new) audio_deg = np.array(audio_deg_new) assert len(audio_ref) == len(audio_deg) audio_ref = torch.from_numpy(audio_ref) audio_deg = torch.from_numpy(audio_deg) if torch.cuda.is_available(): device = torch.device("cuda") audio_ref = audio_ref.to(device) audio_deg = audio_deg.to(device) si_snr = si_snr.to(device) return si_snr(audio_deg, audio_ref).detach().cpu().numpy().tolist()