Upload 3 files
Browse files- app.py +80 -0
- dspy_inference.py +131 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from groq import Groq
|
3 |
+
from typing import List, Optional
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import json, os
|
6 |
+
from pydantic import BaseModel
|
7 |
+
from dspy_inference import get_expanded_query_and_topic
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
12 |
+
USER_AVATAR = "👤"
|
13 |
+
BOT_AVATAR = "🤖"
|
14 |
+
|
15 |
+
if "messages" not in st.session_state:
|
16 |
+
st.session_state.messages = [{"role": "assistant", "content": "Hi, How can I help you today?"}]
|
17 |
+
if "conversation_state" not in st.session_state:
|
18 |
+
st.session_state["conversation_state"] = [{"role": "assistant", "content": "Hi, How can I help you today?"}]
|
19 |
+
|
20 |
+
def main():
|
21 |
+
st.title("Assignment")
|
22 |
+
|
23 |
+
for message in st.session_state.messages:
|
24 |
+
image = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
|
25 |
+
with st.chat_message(message["role"], avatar=image):
|
26 |
+
st.markdown(message["content"])
|
27 |
+
|
28 |
+
system_prompt = f'''You are a helpful assistant who can answer any question that the user asks.
|
29 |
+
'''
|
30 |
+
if prompt := st.chat_input("User input"):
|
31 |
+
st.chat_message("user", avatar=USER_AVATAR).markdown(prompt)
|
32 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
33 |
+
conversation_context = st.session_state["conversation_state"]
|
34 |
+
conversation_context.append({"role": "user", "content": prompt})
|
35 |
+
|
36 |
+
# Use dspy to expand the query and get the topic
|
37 |
+
expanded_query = get_expanded_query_and_topic(prompt, conversation_context)
|
38 |
+
|
39 |
+
context = []
|
40 |
+
context.append({"role": "system", "content": system_prompt})
|
41 |
+
context.extend(st.session_state["conversation_state"])
|
42 |
+
|
43 |
+
# Add the expanded query to the context
|
44 |
+
if expanded_query.expand != "None":
|
45 |
+
context.append({"role": "system", "content": f"Expanded query: {expanded_query.expand}"})
|
46 |
+
context.append({"role": "system", "content": f"Topic: {expanded_query.topic}"})
|
47 |
+
|
48 |
+
response = client.chat.completions.create(
|
49 |
+
messages=context,
|
50 |
+
model="llama3-70b-8192",
|
51 |
+
temperature=0,
|
52 |
+
top_p=1,
|
53 |
+
stop=None,
|
54 |
+
stream=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
58 |
+
result = ""
|
59 |
+
res_box = st.empty()
|
60 |
+
for chunk in response:
|
61 |
+
if chunk.choices[0].delta.content:
|
62 |
+
new_content = chunk.choices[0].delta.content
|
63 |
+
result += new_content
|
64 |
+
res_box.markdown(f'{result}')
|
65 |
+
|
66 |
+
# Display expanded question and tags separately
|
67 |
+
st.markdown("---")
|
68 |
+
# st.markdown("**Query Analysis:**")
|
69 |
+
if expanded_query.expand != "None":
|
70 |
+
st.markdown(f"**Expanded Question:** {expanded_query.expand}")
|
71 |
+
else:
|
72 |
+
st.markdown("**Expanded Question:** No expansion needed")
|
73 |
+
st.markdown(f"**Topic:** {expanded_query.topic}")
|
74 |
+
|
75 |
+
assistant_response = result
|
76 |
+
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
|
77 |
+
conversation_context.append({"role": "assistant", "content": assistant_response})
|
78 |
+
|
79 |
+
if __name__ == '__main__':
|
80 |
+
main()
|
dspy_inference.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List
|
2 |
+
import dspy
|
3 |
+
import copy
|
4 |
+
import dspy.evaluate
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
8 |
+
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
|
9 |
+
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
class Agent(dspy.Module):
|
13 |
+
"""
|
14 |
+
Base Agent Module
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
model: Optional[str] | None = "llama3",
|
20 |
+
client: Optional[str] | None = "ollama",
|
21 |
+
max_tokens: Optional[int] | None = 4096,
|
22 |
+
temperature: Optional[float] | None = 0.5,
|
23 |
+
) -> None:
|
24 |
+
"""
|
25 |
+
Initialising Agent Module
|
26 |
+
|
27 |
+
Args:
|
28 |
+
model: str -> default = llama3
|
29 |
+
client: str -> default = ollama
|
30 |
+
max_tokens: int -> default = 4096
|
31 |
+
temperature: float -> default = 0.5
|
32 |
+
tools: List[Tool] -> default = None
|
33 |
+
"""
|
34 |
+
|
35 |
+
self.model = dspy.GROQ(
|
36 |
+
model="llama3-8b-8192",
|
37 |
+
temperature=temperature,
|
38 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
39 |
+
max_tokens=max_tokens,
|
40 |
+
frequency_penalty=1.5,
|
41 |
+
presence_penalty=1.5,
|
42 |
+
)
|
43 |
+
|
44 |
+
dspy.settings.configure(
|
45 |
+
lm=self.model,
|
46 |
+
max_tokens = max_tokens,
|
47 |
+
temperature = temperature
|
48 |
+
)
|
49 |
+
|
50 |
+
def __deepcopy__(self, memo):
|
51 |
+
new_instance = self.__class__.__new__(self.__class__)
|
52 |
+
memo[id(self)] = new_instance
|
53 |
+
for k, v in self.__dict__.items():
|
54 |
+
if k != 'model':
|
55 |
+
setattr(new_instance, k, copy.deepcopy(v, memo))
|
56 |
+
new_instance.model = self.model
|
57 |
+
return new_instance
|
58 |
+
|
59 |
+
class OutputFormat(BaseModel):
|
60 |
+
expand: Optional[str]
|
61 |
+
topic: str
|
62 |
+
|
63 |
+
class Conversation(BaseModel):
|
64 |
+
role: str
|
65 |
+
content: str
|
66 |
+
|
67 |
+
class Memory(BaseModel):
|
68 |
+
conversations: List[Conversation]
|
69 |
+
|
70 |
+
class BaseSignature(dspy.Signature):
|
71 |
+
"""
|
72 |
+
You are an expert in expanding the user question and generating suitable tags for the question.
|
73 |
+
Follow the exact instructions given:
|
74 |
+
1. Expand with only single question.
|
75 |
+
2. Try to keep the actual content in the expand question. Example: User question: What is math ?, expand: What is mathematics ?
|
76 |
+
3. Tags should be 2-level hierarchy topics. Eg - India - Politics, Sports- Football. Tags should be as specific as possible. If it is a general question topic: GENERAL
|
77 |
+
4. Do not give the reference of the previous question in the expanded question.
|
78 |
+
5. If there is no expanded version of the user question, then give it as expand = "None"
|
79 |
+
6. If there is a general question asked, do not expand the question, just give it as expand="None"
|
80 |
+
7. topic can not be "None"
|
81 |
+
8. Use the provided memory to understand context and provide more relevant expansions and topics.
|
82 |
+
"""
|
83 |
+
|
84 |
+
query: str = dspy.InputField(prefix = "Question: ")
|
85 |
+
memory: Memory = dspy.InputField(prefix = "Previous conversations: ", desc="This is a list of previous conversations.")
|
86 |
+
output: OutputFormat = dspy.OutputField(desc='''Expanded user question and tags are generated as output. Respond with a single JSON object. JSON Schema: {"properties": {"expand": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Expand"}, "topic": {"title": "Topic", "type": "string"}}, "required": ["expand", "topic"], "title": "OutputFormat", "type": "object"}''')
|
87 |
+
|
88 |
+
class OutputAgent(Agent):
|
89 |
+
"""
|
90 |
+
Multi-output Agent Module. Inherited from Agent Module
|
91 |
+
"""
|
92 |
+
|
93 |
+
def __init__(self, model: str | None = "llama3", client: str | None = "ollama", max_tokens: int | None = 8192) -> None:
|
94 |
+
super().__init__(
|
95 |
+
model = model,
|
96 |
+
client = client,
|
97 |
+
max_tokens = max_tokens
|
98 |
+
)
|
99 |
+
|
100 |
+
def __call__(self, query: str, memory: List[dict]) -> dspy.Prediction:
|
101 |
+
"""
|
102 |
+
This function expands the user question and generates the tags for the user question.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
query: str -> The current user query
|
106 |
+
memory: List[dict] -> List of previous conversations
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
dspy.Prediction: Expanded question and topic
|
110 |
+
"""
|
111 |
+
|
112 |
+
# Convert the memory list to the Memory model
|
113 |
+
conversations = [Conversation(role=m["role"], content=m["content"]) for m in memory]
|
114 |
+
memory_model = Memory(conversations=conversations)
|
115 |
+
|
116 |
+
# modules
|
117 |
+
outputGenerator = dspy.TypedPredictor(BaseSignature)
|
118 |
+
|
119 |
+
# infer
|
120 |
+
try:
|
121 |
+
output = outputGenerator(query=query, memory=memory_model)
|
122 |
+
return output
|
123 |
+
except Exception as e:
|
124 |
+
print("Retrying...", e)
|
125 |
+
return self.__call__(query=query, memory=memory)
|
126 |
+
|
127 |
+
# This function can be called from app.py to get the expanded question and topic
|
128 |
+
def get_expanded_query_and_topic(query: str, conversation_context: List[dict]):
|
129 |
+
agent = OutputAgent()
|
130 |
+
result = agent(query, conversation_context)
|
131 |
+
return result.output
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
dspy-ai
|
2 |
+
groq
|
3 |
+
streamlit
|