Spaces:
Sleeping
Sleeping
File size: 8,946 Bytes
8133f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
from transformers import AutoProcessor
from PIL import Image
import os
import torch
import pickle
## ACTUAL INPUT CONSTRUCTION
BASE_SPEAKER_LEN = 787
def joint_listener_input(processor, context_images, description, device):
# Preliminaries
img_dir = "tangram_pngs"
raw_images = process_images(img_dir, context_images)
target_anno = description.lower()
prompt = construct_listener_full_prompt(
processor, target_anno, 0, "verbose_instruction"
)
# Listener processing
outputs = processor(
text=[prompt],
images=[raw_images],
return_tensors="pt"
).to(device)
l_input_tokens = outputs['input_ids'][:, :-2]
l_attn_mask = outputs['attention_mask'][:, :-2]
l_attn_mask[(l_input_tokens == 0).bool()] = 0
images = outputs['pixel_values']
l_image_attn_mask = outputs['pixel_attention_mask']
# Speaker processing
prompts = []
for i in range(10):
prompt = construct_speaker_full_prompt(processor, description, i, "information_after")
prompts.append(prompt)
outputs = processor(
text=prompts,
images=[raw_images]*10,
padding='longest',
return_tensors="pt"
).to(device)
s_input_tokens = outputs['input_ids'][:, :-1]
s_attn_mask = outputs['attention_mask'][:, :-1]
s_attn_mask[(s_input_tokens == 0).bool()] = 0
s_image_attn_mask = outputs['pixel_attention_mask']
s_target_tokens = outputs['input_ids'][:, 1:]
s_target_mask = []
for i in range(10):
curr_mask = create_speaker_caption_mask(outputs['input_ids'][i], s_attn_mask[i])
s_target_mask.append(curr_mask)
s_target_mask = torch.stack(s_target_mask, dim=0)
return images, l_input_tokens, l_attn_mask, l_image_attn_mask, s_input_tokens.unsqueeze(0), \
s_attn_mask.unsqueeze(0), s_image_attn_mask.unsqueeze(0), s_target_mask.unsqueeze(0), \
s_target_tokens.unsqueeze(0)
def joint_speaker_input(processor, image_paths, target_path, device):
# Get the prompt
img_dir = "tangram_pngs"
raw_images = process_images(img_dir, image_paths)
target_idx = image_paths.index(target_path)
base_prompt = construct_speaker_base_prompt(processor, target_idx, "information_after", process=True)
# Create the basic input
outputs = processor(
text=[base_prompt],
images=[raw_images],
return_tensors="pt"
).to(device)
input_tokens = outputs['input_ids']
attn_mask = outputs['attention_mask']
attn_mask[(input_tokens == 0).bool()] = 0
images = outputs['pixel_values']
image_attn_mask = outputs['pixel_attention_mask']
return input_tokens, attn_mask, images, image_attn_mask, torch.LongTensor([target_idx]).to(device)
## UTILITIES
def get_processor():
checkpoint = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(checkpoint, do_image_splitting=False,
size={"longest_edge": 448, "shortest_edge": 224})
return processor
def get_index_to_token():
index_to_token_path = "index_to_token.pkl"
with open(index_to_token_path, 'rb') as f:
index_to_token = pickle.load(f)
return index_to_token
def process_images(img_dir, context_images):
raw_images = []
for img in context_images:
image_path = os.path.join(img_dir, img)
raw_image = Image.open(image_path).convert('RGB')
raw_images.append(raw_image)
return raw_images
def create_speaker_caption_mask(all_token_ids, text_mask):
# Overall token comp: pad + base + caption
padding_tokens = torch.sum(all_token_ids == 0).item()
caption_tokens = all_token_ids.shape[0] - (padding_tokens + BASE_SPEAKER_LEN)
# Construct a mask where the last caption tokens are 1
target_mask = torch.zeros_like(text_mask)
target_mask[-caption_tokens:] = 1
return target_mask.bool()
def construct_listener_full_prompt(processor, target_anno, target_idx, comprehension_prompt_type="verbose_instruction"):
target_anno = target_anno.lower().strip()
messages = []
if comprehension_prompt_type == "verbose_instruction":
# User side: Intro
messages.append(
{
"role" : "user",
"content" : [
{"type" : "text", "text" : "You will be presented with a sequence of 10 images and a caption describing exactly one of them. "},
{"type" : "text", "text" : "Your task is to guess which image the caption describes. "},
]
}
)
# User side: Images
for i in range(10):
if i == 0:
messages[0]["content"].append({"type" : "text", "text" : f" Image {i}: "})
else:
messages[0]["content"].append({"type" : "text", "text" : f", Image {i}: "})
messages[0]["content"].append({"type" : "image"})
# User side: Caption
messages[0]["content"].append({"type" : "text", "text" : f". Caption: {target_anno}"})
messages[0]["content"].append({"type" : "text", "text" : f" Does this caption describe Image 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9?"})
# Model side: Guess
messages.append(
{
"role" : "assistant",
"content" : [
{"type" : "text", "text" : f"The caption describes Image {target_idx}"}
]
}
)
else:
assert(False)
return processor.apply_chat_template(messages, add_generation_prompt=False).strip()
def construct_speaker_full_prompt(processor, target_anno, target_idx,
generation_prompt_type="information_after"):
messages = construct_speaker_base_prompt(processor, target_idx, generation_prompt_type)
# Assistant response
target_anno = target_anno.lower().strip()
messages.append(
{
"role" : "assistant",
"content" : [
{"type" : "text", "text" : target_anno}
]
}
)
return processor.apply_chat_template(messages, add_generation_prompt=False).strip()
def construct_speaker_base_prompt(processor, target_idx, generation_prompt_type="information_after", process=False):
messages = []
if generation_prompt_type == "information_after":
# User side: Intro
messages.append(
{
"role" : "user",
"content" : [
{"type" : "text", "text" : "You will be presented with a sequence of 10 images and be assigned a target image. "},
{"type" : "text", "text" : "Your task is to produce a caption for your target image such that anyone could guess the image from your description. "},
]
}
)
# User side: Images
for i in range(10):
if i == 0:
messages[0]["content"].append({"type" : "text", "text" : f" Image {i}: "})
else:
messages[0]["content"].append({"type" : "text", "text" : f", Image {i}: "})
messages[0]["content"].append({"type" : "image"})
# User side: Target assignment
messages[0]["content"].append({"type" : "text", "text" : f". Your target image is Image {target_idx}. Produce your caption now."})
else:
assert(False)
if process:
prompt = processor.apply_chat_template(messages, add_generation_prompt=True).strip()
return prompt
else:
return messages
def process_idefics_listener_generation_input(speaker_context, captions, processor, img_dir, num_samples, device):
# First construct the prompts
prompts, raw_images = get_listener_generation_prompts(speaker_context, captions, num_samples, img_dir, processor)
# Process the prompts
listener_inputs = processor(
text=prompts,
images=raw_images,
padding='longest',
return_tensors='pt'
)
input_tokens = listener_inputs['input_ids'][:, :-2].to(device)
attn_mask = listener_inputs['attention_mask'][:, :-2].to(device)
attn_mask[input_tokens == 0] = 0
images = listener_inputs['pixel_values'].to(device)
image_attn_mask = listener_inputs['pixel_attention_mask'].to(device)
return input_tokens, attn_mask, images, image_attn_mask
def get_listener_generation_prompts(speaker_contexts, captions, num_samples, img_dir, processor):
prompts = []
all_raw_images = []
for i, speaker_context in enumerate(speaker_contexts):
raw_images = process_images(img_dir, speaker_context)
for j in range(num_samples):
curr_idx = i * num_samples + j
caption = captions[curr_idx]
prompt = construct_listener_full_prompt(processor, caption, 0, "verbose_instruction")
prompts.append(prompt)
all_raw_images.append(raw_images)
return prompts, all_raw_images
|