Spaces:
Sleeping
Sleeping
File size: 24,151 Bytes
8133f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
# File: model_utils
# -----------------
# Contain utilities for models, such as loading and saving models
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from transformers import GenerationConfig
from dataset import process_idefics_listener_generation_input
import pdb
def filter_targets(logits, index_to_token):
target_logits = logits[:, index_to_token]
return target_logits
class IdeficsJointInferenceModel(nn.Module):
def __init__(self, listener_lambda, speaker_lambda,
model=None, listener=None, speaker=None):
super().__init__()
self.l_lambda = listener_lambda
self.s_lambda = speaker_lambda
self.has_shared_parameters = model is not None
if self.has_shared_parameters:
self.model = model
else:
self.listener = listener
self.speaker = speaker
def forward(self, inf_mode, arguments):
if inf_mode == "joint_comprehension":
return self.comprehension_side(arguments)
elif inf_mode == "joint_reranking":
return self.reranking_side(arguments)
elif inf_mode == "comprehension":
return self.split_comprehension_forward(arguments)
elif inf_mode == "split_reranking":
return self.split_reranking_forward(arguments)
elif inf_mode == "generation":
return self.split_generation_forward(arguments)
def get_listener(self):
if self.has_shared_parameters:
return self.model
else:
return self.listener
def get_speaker(self):
if self.has_shared_parameters:
return self.model
else:
return self.speaker
def get_image_embeddings(self, pixel_values, pixel_attention_mask, model):
'''
Get image embeddings to avoid repeated computation for images during joint inference.
Adapted from the IDEFICS-2 source code.
'''
# Get the model
model = self.get_listener() if model == "listener" else self.get_speaker()
if len(pixel_attention_mask.shape) == 5:
pixel_attention_mask = pixel_attention_mask[:, 0].contiguous()
# Assume images of form: BxCxcnlxHxW
batch_size, num_images, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.to(dtype=model.dtype) # fp16 compatibility
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Remove padding images from the mask/pP p
pixel_attention_mask = pixel_attention_mask.view(
batch_size * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
patch_size = model.model.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = model.model.model.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
).last_hidden_state
# Modality projection & resampling
image_hidden_states = model.model.model.connector(
image_hidden_states, attention_mask=patch_attention_mask.view(pixel_values.size(0), -1)
)
return image_hidden_states
def split_comprehension_side(self, input_tokens, attn_mask, images, image_attn_mask, index_to_token):
'''
Redundant with split_comprehension_forward except for the final computation.
Used during deployment in ray_models.py.
'''
listener = self.get_listener()
all_logits = listener(
input_ids=input_tokens,
attention_mask=attn_mask,
pixel_values=images,
pixel_attention_mask=image_attn_mask
)['logits']
target_logits = filter_targets(all_logits[:, -1], index_to_token)
listener_log_probs = F.log_softmax(target_logits, dim=1)
return listener_log_probs
def split_comprehension_forward(self, arguments):
input_tokens, attn_mask, images, image_attn_mask = arguments
listener = self.get_listener()
all_logits = listener(
input_ids=input_tokens,
attention_mask=attn_mask,
pixel_values=images,
pixel_attention_mask=image_attn_mask
)['logits']
return all_logits
def split_generation_forward(self, arguments):
input_tokens, attn_mask, images, image_attn_mask = arguments
speaker = self.get_speaker()
all_logits = speaker(
input_ids=input_tokens,
attention_mask=attn_mask,
pixel_values=images,
pixel_attention_mask=image_attn_mask
)['logits']
return all_logits
def split_reranking_forward(self, arguments):
images, input_tokens, attn_mask, image_attn_mask, target_tokens, target_mask = arguments
# Get the image embeddings
image_embeddings = self.get_image_embeddings(images, image_attn_mask, "speaker")
embed_shape = image_embeddings.shape
B, mult = input_tokens.shape[:2]
C = images.shape[1]
image_embeddings = image_embeddings.view(B, C, *embed_shape[1:])
image_embeddings = image_embeddings.unsqueeze(1).repeat(1, mult, 1, 1, 1).view(-1, *embed_shape[1:])
annotation_mask = torch.zeros(B, mult, device=image_embeddings.device).bool()
_, speaker_log_probs = self.reranking_speaker_side(image_embeddings, input_tokens, attn_mask,
image_attn_mask, target_tokens, target_mask,
annotation_mask)
return speaker_log_probs
def comprehension_side(self, arguments):
images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token, \
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label = arguments
if self.has_shared_parameters:
image_embeddings = self.get_image_embeddings(images, l_image_attn_mask, "listener")
listener_log_probs = self.comprehension_listener_side(
image_embeddings, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token
) # TODO
speaker_log_probs = self.comprehension_speaker_side(
image_embeddings, s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label
)
else:
# Deprecated and not used in experiments
listener_embeddings = self.get_image_embeddings(images, l_image_attn_mask, "listener")
listener_log_probs = self.comprehension_listener_side(
listener_embeddings, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token
)
speaker_embeddings = self.get_image_embeddings(images, "speaker")
speaker_log_probs = self.comprehension_speaker_side(
speaker_embeddings, s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label
)
joint_log_probs = self.comprehension_reranking(listener_log_probs, speaker_log_probs)
return listener_log_probs, speaker_log_probs, joint_log_probs
def comprehension_listener_side(self, image_encoder_embeddings, input_tokens, attn_mask, image_attn_mask,
index_to_token):
listener = self.get_listener()
all_logits = listener(
input_ids=input_tokens,
attention_mask=attn_mask,
image_hidden_states=image_encoder_embeddings,
pixel_attention_mask=image_attn_mask
)['logits']
target_logits = filter_targets(all_logits[:, -1], index_to_token) # BxC
listener_log_probs = F.log_softmax(target_logits, dim=1)
return listener_log_probs
def comprehension_speaker_side(self, image_encoder_embeddings, input_tokens, attn_mask, image_attn_mask,
target_mask, target_label):
# Expand embeddings
B, C = input_tokens.shape[:2]
embed_shape = image_encoder_embeddings.shape
image_encoder_embeddings = image_encoder_embeddings.view(B, C, *embed_shape[1:])
image_encoder_embeddings = image_encoder_embeddings.unsqueeze(1).repeat(1, C, 1, 1, 1).view(-1, *embed_shape[1:])
input_tokens = input_tokens.view(B*C, -1)
attn_mask = attn_mask.view(B*C, -1)
# Forward pass
speaker = self.get_speaker()
all_logits = speaker(
input_ids=input_tokens,
attention_mask=attn_mask,
image_hidden_states=image_encoder_embeddings,
)['logits']
# Get tokenwise probabilities
all_log_probs = F.log_softmax(all_logits, dim=2)
target_label = target_label.view(B*C, -1).unsqueeze(2)
target_mask = target_mask.view(B*C, -1)
token_log_probs = torch.gather(all_log_probs, 2, target_label).squeeze(2) # BCxT
# Compute the log probabilities
token_log_probs = token_log_probs * target_mask
utterance_log_probs = torch.sum(token_log_probs, dim=1).view(B, C)
return utterance_log_probs
def comprehension_reranking(self, listener_log_probs, speaker_log_probs):
rerank_weights = self.l_lambda * listener_log_probs + (1 - self.l_lambda) * speaker_log_probs
rerank_denominator = torch.logsumexp(rerank_weights, dim=1).unsqueeze(1)
rerank_log_distribution = rerank_weights - rerank_denominator
return rerank_log_distribution
def reranking_side(self, arguments):
images, label, s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_tokens, s_target_mask, \
l_input_tokens, l_attn_mask, l_image_attn_mask, \
index_to_token, annotation_mask = arguments
# Repeat image embeddings according to number of distractors
if self.has_shared_parameters:
image_embeddings = self.get_image_embeddings(images, s_image_attn_mask, "speaker")
embed_shape = image_embeddings.shape
B, mult = s_input_tokens.shape[:2]
C = images.shape[1]
image_embeddings = image_embeddings.view(B, C, *embed_shape[1:])
image_embeddings = image_embeddings.unsqueeze(1).repeat(1, mult, 1, 1, 1).view(-1, *embed_shape[1:])
speaker_logits, speaker_log_probs = self.reranking_speaker_side(image_embeddings, s_input_tokens,
s_attn_mask, s_image_attn_mask,
s_target_tokens, s_target_mask,
annotation_mask)
listener_log_probs = self.reranking_listener_side(image_embeddings, l_input_tokens, l_attn_mask,
l_image_attn_mask, label, index_to_token,
annotation_mask)
else:
# Deprecated and no longer used in main experiments
image_embeddings = self.get_image_embeddings(images, s_image_attn_mask, "speaker")
embed_shape = image_embeddings.shape
B, mult = s_input_tokens.shape[:2]
C = images.shape[1]
image_embeddings = image_embeddings.view(B, C, *embed_shape[1:])
image_embeddings = image_embeddings.unsqueeze(1).repeat(1, mult, 1, 1, 1).view(-1, *embed_shape[1:])
speaker_logits, speaker_log_probs = self.reranking_speaker_side(image_embeddings, s_input_tokens,
s_attn_mask, s_image_attn_mask,
s_target_tokens, s_target_mask,
annotation_mask)
image_embeddings = self.get_image_embeddings(images, l_image_attn_mask, "listener")
embed_shape = image_embeddings.shape
B, mult = s_input_tokens.shape[:2]
C = images.shape[1]
image_embeddings = image_embeddings.view(B, C, *embed_shape[1:])
image_embeddings = image_embeddings.unsqueeze(1).repeat(1, mult, 1, 1, 1).view(-1, *embed_shape[1:])
listener_log_probs = self.reranking_listener_side(image_embeddings, l_input_tokens, l_attn_mask,
l_image_attn_mask, label, index_to_token, annotation_mask)
# Full forward passes
utterance_distribution = self.reranking_combination(speaker_log_probs, listener_log_probs)
return speaker_logits, speaker_log_probs, listener_log_probs, utterance_distribution
def reranking_speaker_side(self, image_embeddings, input_tokens, attn_mask, image_attn_mask,
target_tokens, target_mask, annotation_mask):
# Flatten inputs and outputs
B, mult = input_tokens.shape[:2]
input_tokens = input_tokens.view(B*mult, -1)
attn_mask = attn_mask.view(B*mult, -1)
target_tokens = target_tokens.view(B*mult, -1).unsqueeze(-1)
target_mask = target_mask.view(B*mult, -1)
# Forward pass: Compute utterance probabilities for all
speaker = self.get_speaker()
all_logits = speaker(
input_ids=input_tokens,
attention_mask=attn_mask,
image_hidden_states=image_embeddings,
)['logits']
# Compute utterance log probabilities
all_log_probs = F.log_softmax(all_logits, dim=2)
token_log_probs = torch.gather(all_log_probs, 2, target_tokens).squeeze(2) # BCxT
token_log_probs = token_log_probs * target_mask
utterance_log_probs = torch.sum(token_log_probs, dim=1).view(B, mult)
utterance_log_probs[annotation_mask] = float('-inf') # Mask in the event there aren't 9 distractors
return all_logits, utterance_log_probs
def reranking_listener_side(self, image_embeddings, input_tokens, attn_mask, image_attn_mask,
label, index_to_token, annotation_mask):
# Flatten inputs and outputs
B, mult = input_tokens.shape[:2]
input_tokens = input_tokens.view(B*mult, -1)
attn_mask = attn_mask.view(B*mult, -1)
label = label.unsqueeze(1).repeat(1, mult).view(-1).unsqueeze(1)
# Forward pass: Compute listener log-probs
listener = self.get_listener()
all_logits = listener(
input_ids=input_tokens,
attention_mask=attn_mask,
image_hidden_states=image_embeddings,
)['logits']
target_logits = filter_targets(all_logits[:, -1], index_to_token) # BmultxC
listener_log_probs = F.log_softmax(target_logits, dim=1) #BmultxC
utterance_log_probs = torch.gather(listener_log_probs, 1, label).squeeze(1).view(B, mult)
utterance_log_probs[annotation_mask] = float('-inf') # Mask in the event there aren't mult distractors
return utterance_log_probs
def reranking_combination(self, speaker_utterance_log_probs, listener_utterance_log_probs):
weights = self.s_lambda * speaker_utterance_log_probs + (1-self.s_lambda) * listener_utterance_log_probs
rerank_denominator = torch.logsumexp(weights, dim=1).unsqueeze(1)
rerank_log_distribution = weights - rerank_denominator
return rerank_log_distribution
def split_generate(self, input_tokens, attn_mask, images, image_attn_mask, processor,
max_steps=25, sampling_type="nucleus", temperature=1.0,
top_k=40, top_p=0.9, repetition_penalty=1, num_samples=1):
# (1) Perform generation
speaker = self.get_speaker()
generation_config = GenerationConfig(
max_new_tokens=max_steps,
do_sample=True,
temperature=temperature,
top_k=top_k, top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=num_samples,
output_hidden_states=True,
return_dict_in_generate=True
)
outputs = speaker.generate(
input_ids=input_tokens,
attention_mask=attn_mask,
pixel_values=images,
pixel_attention_mask=image_attn_mask,
generation_config=generation_config,
use_cache=True
)
# (2) Get the speaker captions
B = input_tokens.shape[0]
observed_steps = len(outputs['hidden_states'])
filtered_seqs = []
for seq in outputs['sequences']:
filtered_seqs.append(seq[-observed_steps:])
speaker_outputs = processor.batch_decode(filtered_seqs, skip_special_tokens=True)
# (3) Get the speaker log probabilities
target_outputs = torch.stack(filtered_seqs, dim=0) # BNxT
target_mask = target_outputs != 0
final_states = torch.stack([outputs['hidden_states'][i][-1][:, -1] for i in range(observed_steps)], dim=1) # BNxTxD
token_logits = speaker.lm_head(final_states) # BNxTxV
token_log_probs = F.log_softmax(token_logits, dim=2)
token_log_probs = torch.gather(token_log_probs, 2, target_outputs.unsqueeze(2)).squeeze(2)
# (4) Choose the output with the top probability
if B == 1:
utterance_log_probs = torch.sum(token_log_probs * target_mask, dim=1).view(num_samples) # N
best_idx = torch.argmax(utterance_log_probs).item()
return [speaker_outputs[best_idx]]
else:
utterance_log_probs = torch.sum(token_log_probs * target_mask, dim=1).view(B, num_samples) # N
best_indices = torch.argmax(utterance_log_probs, dim=1)
choices = []
for i in range(B):
curr_index = num_samples * i + best_indices[i].item()
choices.append(speaker_outputs[curr_index])
return choices
def generate(self, images, s_input_tokens, s_attn_mask, s_image_attn_mask, label,
image_paths, processor, image_dir, index_to_token,
max_steps=25, sampling_type="nucleus", temperature=1.0, top_k=40,
top_p=0.9, repetition_penalty=1, num_samples=10):
# Get the repeated image embeddings; assume parameter sharing
image_embeddings = self.get_image_embeddings(images, s_image_attn_mask, "speaker")
# Sample utterances from the speaker
speaker_utterance_log_probs, speaker_utterances = self.generate_speaker_side(processor, images, s_input_tokens,
s_attn_mask, s_image_attn_mask, max_steps,
sampling_type, temperature,
top_k, top_p, repetition_penalty,
num_samples) # BxN, BN list
# Get probabilities for the utterances from the listener
listener_log_probs = self.generate_listener_side(image_embeddings, speaker_utterances, label, image_paths, processor,
image_dir, index_to_token, num_samples)
# Reranked selection
utterance_weights = self.s_lambda*speaker_utterance_log_probs + (1-self.s_lambda)*listener_log_probs
chosen_indices = torch.argmax(utterance_weights, dim=1)
choices = []
for i in range(speaker_utterance_log_probs.shape[0]):
curr_index = num_samples * i + chosen_indices[i].item()
choices.append(speaker_utterances[curr_index])
return choices, speaker_utterances, listener_log_probs, speaker_utterance_log_probs, utterance_weights
def generate_speaker_side(self, processor, images, s_input_tokens, s_attn_mask, s_image_attn_mask, max_steps,
sampling_type, temperature, top_k, top_p, repetition_penalty, num_samples):
# (1) Perform generation
speaker = self.get_speaker()
generation_config = GenerationConfig(
max_new_tokens=max_steps,
do_sample=True,
temperature=temperature,
top_k=top_k, top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=num_samples,
output_hidden_states=True,
return_dict_in_generate=True
)
outputs = speaker.generate(
input_ids=s_input_tokens,
attention_mask=s_attn_mask,
pixel_values=images,
pixel_attention_mask=s_image_attn_mask,
generation_config=generation_config,
use_cache=True
)
# (2) Get the speaker captions
B = s_input_tokens.shape[0]
observed_steps = len(outputs['hidden_states'])
filtered_seqs = []
for seq in outputs['sequences']:
filtered_seqs.append(seq[-observed_steps:])
speaker_outputs = processor.batch_decode(filtered_seqs, skip_special_tokens=True)
# (3) Get the speaker log probabilities
target_outputs = torch.stack(filtered_seqs, dim=0) # BNxT
target_mask = target_outputs != 0
final_states = torch.stack([outputs['hidden_states'][i][-1][:, -1] for i in range(observed_steps)], dim=1) # BNxTxD
token_logits = speaker.lm_head(final_states) # BNxTxV
token_log_probs = F.log_softmax(token_logits, dim=2)
token_log_probs = torch.gather(token_log_probs, 2, target_outputs.unsqueeze(2)).squeeze(2)
utterance_log_probs = torch.sum(token_log_probs * target_mask, dim=1).view(B, num_samples) # BxN
return utterance_log_probs, speaker_outputs
def generate_listener_side(self, image_embeddings, speaker_utterances, label, image_paths, processor,
image_dir, index_to_token, num_samples):
# Construct the inputs
B = label.shape[0]
embed_shape = image_embeddings.shape
image_embeddings = image_embeddings.view(B, -1, *embed_shape[1:])
image_embeddings = image_embeddings.unsqueeze(1).repeat(1, num_samples, 1, 1, 1).view(-1, *embed_shape[1:])
l_batch = process_idefics_listener_generation_input(image_paths, speaker_utterances, processor,
image_dir, num_samples, image_embeddings.device)
l_input_tokens, l_attn_mask, _, l_image_attn_mask = l_batch
label = label.unsqueeze(1).repeat(1, num_samples).view(-1).unsqueeze(1)
# Forward pass
listener = self.get_listener()
all_logits = listener(
input_ids=l_input_tokens,
attention_mask=l_attn_mask,
image_hidden_states=image_embeddings,
pixel_attention_mask=l_image_attn_mask
)['logits']
target_logits = filter_targets(all_logits[:, -1], index_to_token)
listener_log_probs = F.log_softmax(target_logits, dim=1)
utterance_log_probs = torch.gather(listener_log_probs, 1, label).squeeze(1).view(B, num_samples)
return utterance_log_probs
|