Spaces:
Sleeping
Sleeping
momergul
commited on
Commit
•
14eba99
1
Parent(s):
554adbb
Update
Browse files- app.py +153 -89
- joint_inference.py +1 -6
- models.py +2 -2
app.py
CHANGED
@@ -21,9 +21,9 @@ css="""
|
|
21 |
"""
|
22 |
|
23 |
def initialize_game() -> List[List[str]]:
|
24 |
-
context_dicts = [generate_complete_game() for _ in range(
|
25 |
|
26 |
-
roles = ["speaker"] * 3 + ["listener"] * 3
|
27 |
speaker_images = []
|
28 |
listener_images = []
|
29 |
targets = []
|
@@ -71,6 +71,7 @@ def get_model_response(
|
|
71 |
@spaces.GPU(duration=20)
|
72 |
def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token, adapter_name):
|
73 |
model.model.set_adapter(adapter_name)
|
|
|
74 |
model = model.cuda()
|
75 |
with torch.no_grad():
|
76 |
captions, _, _, _, _ = model.generate(
|
@@ -85,6 +86,7 @@ def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask
|
|
85 |
def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
|
86 |
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name):
|
87 |
model.model.set_adapter(adapter_name)
|
|
|
88 |
model = model.cuda()
|
89 |
with torch.no_grad():
|
90 |
_, _, joint_log_probs = model.comprehension_side([
|
@@ -95,71 +97,118 @@ def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_at
|
|
95 |
response = image_paths[target_idx]
|
96 |
return response
|
97 |
|
98 |
-
def
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
def create_app():
|
162 |
with gr.Blocks(css=css) as app:
|
|
|
|
|
163 |
gr.Markdown("# Tangram Reference Game")
|
164 |
gr.Markdown(
|
165 |
'### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\
|
@@ -207,51 +256,66 @@ def create_app():
|
|
207 |
interactive=False,
|
208 |
)
|
209 |
|
210 |
-
send_btn = gr.Button("Send")
|
211 |
-
|
212 |
-
interaction_generator = None
|
213 |
model = get_model()
|
214 |
processor = get_processor()
|
215 |
index_to_token = get_index_to_token()
|
216 |
|
217 |
-
print("Heyo!")
|
218 |
def start_interaction(model_iteration):
|
|
|
219 |
if model_iteration is None:
|
220 |
return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \
|
221 |
-
gr.update(interactive=False), gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
|
224 |
nonlocal model
|
225 |
nonlocal processor
|
226 |
nonlocal index_to_token
|
227 |
-
interaction_generator = interaction(model, processor, index_to_token, model_iteration)
|
228 |
-
images, conversation, role, turn, acc_message = next(interaction_generator)
|
229 |
-
human_listener = role == "Listener"
|
230 |
-
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, acc_message, \
|
231 |
-
gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True)
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
246 |
|
247 |
start_btn.click(
|
248 |
start_interaction,
|
249 |
inputs=[model_iteration],
|
250 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
)
|
252 |
-
send_btn.click(send_message, inputs=[user_input, radio_buttons], outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input, radio_buttons, send_btn])
|
253 |
|
254 |
return app
|
255 |
|
256 |
app = create_app()
|
|
|
257 |
app.launch()
|
|
|
21 |
"""
|
22 |
|
23 |
def initialize_game() -> List[List[str]]:
|
24 |
+
context_dicts = [generate_complete_game() for _ in range(4)]
|
25 |
|
26 |
+
roles = ["listener"] * 3 + ["speaker"] * 3 + ["listener"] * 3 + ["speaker"] * 3
|
27 |
speaker_images = []
|
28 |
listener_images = []
|
29 |
targets = []
|
|
|
71 |
@spaces.GPU(duration=20)
|
72 |
def get_speaker_response(model, images, input_tokens, attn_mask, image_attn_mask, label, image_paths, processor, img_dir, index_to_token, adapter_name):
|
73 |
model.model.set_adapter(adapter_name)
|
74 |
+
print(adapter_name)
|
75 |
model = model.cuda()
|
76 |
with torch.no_grad():
|
77 |
captions, _, _, _, _ = model.generate(
|
|
|
86 |
def get_listener_response(model, images, l_input_tokens, l_attn_mask, l_image_attn_mask, index_to_token,
|
87 |
s_input_tokens, s_attn_mask, s_image_attn_mask, s_target_mask, s_target_label, image_paths, adapter_name):
|
88 |
model.model.set_adapter(adapter_name)
|
89 |
+
print(adapter_name)
|
90 |
model = model.cuda()
|
91 |
with torch.no_grad():
|
92 |
_, _, joint_log_probs = model.comprehension_side([
|
|
|
97 |
response = image_paths[target_idx]
|
98 |
return response
|
99 |
|
100 |
+
def initialize_interaction(model_iteration):
|
101 |
+
# initialize the overall history
|
102 |
+
new_history = {
|
103 |
+
'adapter_name' : 'initial' if model_iteration == "Initial System" else "final",
|
104 |
+
'image_role_pairs' : initialize_game(),
|
105 |
+
'conversation' : [],
|
106 |
+
'turn' : 0,
|
107 |
+
'num_correct' : 0,
|
108 |
+
}
|
109 |
+
|
110 |
+
# Initialize the first turn (always a listener)
|
111 |
+
turn = new_history['turn']
|
112 |
+
image_role_pairs = new_history['image_role_pairs']
|
113 |
+
speaker_image, listener_image, target_image, _ = image_role_pairs[turn]
|
114 |
+
target_idx = speaker_image.index(target_image)
|
115 |
+
new_history['conversation'].extend([
|
116 |
+
f"TURN: {turn + 1}/12",
|
117 |
+
f"Generate a description for the target image. Your target is Image {target_idx + 1}"
|
118 |
+
])
|
119 |
+
|
120 |
+
return new_history
|
121 |
+
|
122 |
+
def progress_game(user_message, model, processor, index_to_token, current_state):
|
123 |
+
# First get the game state
|
124 |
+
turn = current_state['turn']
|
125 |
+
image_role_pairs = current_state['image_role_pairs']
|
126 |
+
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
|
127 |
+
human_role = "Speaker" if model_role == "listener" else "Listener"
|
128 |
+
|
129 |
+
# Next, move on with current turn
|
130 |
+
if model_role == "listener":
|
131 |
+
human_context = speaker_image
|
132 |
+
model_context = listener_image
|
133 |
+
|
134 |
+
# If model is a listener, the human must have sent a message
|
135 |
+
current_state['conversation'].append(f"You: {user_message}")
|
136 |
+
model_message = get_model_response(
|
137 |
+
model, current_state['adapter_name'], processor, index_to_token, model_role,
|
138 |
+
model_context, user_message=user_message
|
139 |
+
)
|
140 |
+
model_idx = human_context.index(model_message)
|
141 |
+
target_idx = human_context.index(target_image)
|
142 |
+
|
143 |
+
if int(model_idx) == int(target_idx):
|
144 |
+
current_state['conversation'].append("The model guessed correctly!\n")
|
145 |
+
current_state['num_correct'] += 1
|
146 |
+
else:
|
147 |
+
current_state['conversation'].append(f"The model guessed incorrectly.\n")
|
148 |
+
else:
|
149 |
+
human_context = listener_image
|
150 |
+
model_context = speaker_image
|
151 |
+
|
152 |
+
# If model is a speaker, the human must have made a guess
|
153 |
+
target_idx = human_context.index(target_image)
|
154 |
+
current_state['conversation'][-1] += f"{user_message}"
|
155 |
+
if int(user_message) == target_idx + 1:
|
156 |
+
current_state['conversation'].append("Correct!\n")
|
157 |
+
current_state['num_correct'] += 1
|
158 |
+
else:
|
159 |
+
current_state['conversation'].append(f"Incorrect!\n")
|
160 |
+
|
161 |
+
# We move on to the next turn
|
162 |
+
current_state['turn'] += 1
|
163 |
+
acc_message = f"{current_state['num_correct']}/{current_state['turn']}"
|
164 |
+
turn_message = f"{current_state['turn'] + 1}/12"
|
165 |
+
if current_state['turn'] == len(image_role_pairs):
|
166 |
+
current_state['conversation'].append('The game is over!')
|
167 |
+
return human_context, current_state['conversation'], human_role, turn_message, acc_message, {}
|
168 |
+
|
169 |
+
speaker_image, listener_image, target_image, model_role = image_role_pairs[current_state['turn']]
|
170 |
+
human_role = "Listener" if model_role == "speaker" else "Speaker"
|
171 |
+
if model_role == "speaker":
|
172 |
+
human_context = listener_image
|
173 |
+
model_context = speaker_image
|
174 |
+
|
175 |
+
current_state['conversation'].extend([
|
176 |
+
f"TURN: {current_state['turn'] + 1}/12",
|
177 |
+
f"Guess the target image given the speaker's description. ",
|
178 |
+
])
|
179 |
+
model_message = get_model_response(model, current_state['adapter_name'], processor, index_to_token,
|
180 |
+
model_role, model_context, target_image=target_image)
|
181 |
+
current_state['conversation'].append(f"Model: {model_message}")
|
182 |
+
current_state['conversation'].append("You: The target is Image ")
|
183 |
+
else:
|
184 |
+
human_context = speaker_image
|
185 |
+
model_context = listener_image
|
186 |
+
target_idx = human_context.index(target_image)
|
187 |
|
188 |
+
current_state['conversation'].extend([
|
189 |
+
f"TURN: {current_state['turn'] + 1}/12",
|
190 |
+
f"Generate a description for the target image. Your target is Image {target_idx + 1}",
|
191 |
+
])
|
192 |
+
|
193 |
+
return human_context, current_state['conversation'], human_role, turn_message, acc_message, current_state
|
194 |
+
|
195 |
+
def get_current_images(current_history):
|
196 |
+
turn = current_history['turn']
|
197 |
+
image_role_pairs = current_history['image_role_pairs']
|
198 |
+
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
|
199 |
+
human_context = listener_image if model_role == "speaker" else speaker_image
|
200 |
+
return human_context
|
201 |
+
|
202 |
+
def get_human_role(current_history):
|
203 |
+
turn = current_history['turn']
|
204 |
+
image_role_pairs = current_history['image_role_pairs']
|
205 |
+
speaker_image, listener_image, target_image, model_role = image_role_pairs[turn]
|
206 |
+
return "Listener" if model_role == "speaker" else "Speaker"
|
207 |
|
208 |
def create_app():
|
209 |
with gr.Blocks(css=css) as app:
|
210 |
+
game_history = gr.State(value={})
|
211 |
+
|
212 |
gr.Markdown("# Tangram Reference Game")
|
213 |
gr.Markdown(
|
214 |
'### You will be playing a sequence of reference games against a model. To start a game, first select whether ' +\
|
|
|
256 |
interactive=False,
|
257 |
)
|
258 |
|
259 |
+
send_btn = gr.Button("Send", interactive=False)
|
|
|
|
|
260 |
model = get_model()
|
261 |
processor = get_processor()
|
262 |
index_to_token = get_index_to_token()
|
263 |
|
|
|
264 |
def start_interaction(model_iteration):
|
265 |
+
# Initialize the interaction
|
266 |
if model_iteration is None:
|
267 |
return [], "Please select a model iteration.", "", "", "", gr.update(interactive=False), \
|
268 |
+
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True), {}
|
269 |
+
current_history = initialize_interaction(model_iteration)
|
270 |
+
|
271 |
+
# Unpack the relevant items
|
272 |
+
images = get_current_images(current_history)
|
273 |
+
conversation = current_history["conversation"]
|
274 |
+
role = get_human_role(current_history)
|
275 |
+
human_listener = role == "Listener"
|
276 |
+
|
277 |
+
current_turn = current_history['turn'] + 1
|
278 |
+
turn_msg = f"{current_turn}/12"
|
279 |
+
acc_msg = "0/0"
|
280 |
+
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn_msg, acc_msg, \
|
281 |
+
gr.update(interactive=not human_listener), gr.update(interactive=human_listener), gr.update(interactive=True), gr.update(interactive=False), current_history
|
282 |
|
283 |
+
def send_message(message, radio_choice, current_state):
|
284 |
nonlocal model
|
285 |
nonlocal processor
|
286 |
nonlocal index_to_token
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
+
# Game ended
|
289 |
+
if current_state['turn'] == len(current_state['image_role_pairs']):
|
290 |
+
return [], conversation_output.value, current_role.value, current_turn.value, accuracy.value, gr.update(interactive=False), \
|
291 |
+
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, value=None), {}
|
292 |
+
|
293 |
+
# Regular game progress
|
294 |
+
user_output = message if radio_choice is None else radio_choice
|
295 |
+
images, conversation, role, turn, acc_message, current_state = progress_game(user_output, model, processor, index_to_token, current_state)
|
296 |
+
human_listener = role == "Listener"
|
297 |
+
return [(f"tangram_pngs/{img}", f"Image {i+1}") for i, img in enumerate(images)], "\n".join(conversation), role, turn, \
|
298 |
+
acc_message, gr.update(interactive=not human_listener, value=""), gr.update(interactive=human_listener, value=None), \
|
299 |
+
gr.update(interactive=True), gr.update(interactive=False), current_state
|
|
|
300 |
|
301 |
start_btn.click(
|
302 |
start_interaction,
|
303 |
inputs=[model_iteration],
|
304 |
+
outputs=[
|
305 |
+
image_output, conversation_output, current_role, current_turn, accuracy,
|
306 |
+
user_input, radio_buttons, send_btn, model_iteration, game_history],
|
307 |
+
queue=False
|
308 |
+
)
|
309 |
+
send_btn.click(
|
310 |
+
send_message,
|
311 |
+
inputs=[user_input, radio_buttons, game_history],
|
312 |
+
outputs=[image_output, conversation_output, current_role, current_turn, accuracy, user_input,
|
313 |
+
radio_buttons, send_btn, model_iteration, game_history],
|
314 |
+
queue=True
|
315 |
)
|
|
|
316 |
|
317 |
return app
|
318 |
|
319 |
app = create_app()
|
320 |
+
app.queue()
|
321 |
app.launch()
|
joint_inference.py
CHANGED
@@ -346,7 +346,6 @@ class IdeficsJointInferenceModel(nn.Module):
|
|
346 |
speaker = self.get_speaker()
|
347 |
generation_config = GenerationConfig(
|
348 |
max_new_tokens=max_steps,
|
349 |
-
min_new_tokens=1,
|
350 |
do_sample=True,
|
351 |
temperature=temperature,
|
352 |
top_k=top_k, top_p=top_p,
|
@@ -429,6 +428,7 @@ class IdeficsJointInferenceModel(nn.Module):
|
|
429 |
speaker = self.get_speaker()
|
430 |
generation_config = GenerationConfig(
|
431 |
max_new_tokens=max_steps,
|
|
|
432 |
do_sample=True,
|
433 |
temperature=temperature,
|
434 |
top_k=top_k, top_p=top_p,
|
@@ -438,11 +438,6 @@ class IdeficsJointInferenceModel(nn.Module):
|
|
438 |
return_dict_in_generate=True
|
439 |
)
|
440 |
|
441 |
-
print(torch.any(torch.isnan(s_input_tokens)))
|
442 |
-
print(torch.any(torch.isnan(s_attn_mask)))
|
443 |
-
print(torch.any(torch.isnan(images)))
|
444 |
-
print(torch.any(torch.isnan(s_image_attn_mask)))
|
445 |
-
|
446 |
outputs = speaker.generate(
|
447 |
input_ids=s_input_tokens,
|
448 |
attention_mask=s_attn_mask,
|
|
|
346 |
speaker = self.get_speaker()
|
347 |
generation_config = GenerationConfig(
|
348 |
max_new_tokens=max_steps,
|
|
|
349 |
do_sample=True,
|
350 |
temperature=temperature,
|
351 |
top_k=top_k, top_p=top_p,
|
|
|
428 |
speaker = self.get_speaker()
|
429 |
generation_config = GenerationConfig(
|
430 |
max_new_tokens=max_steps,
|
431 |
+
min_new_tokens=1,
|
432 |
do_sample=True,
|
433 |
temperature=temperature,
|
434 |
top_k=top_k, top_p=top_p,
|
|
|
438 |
return_dict_in_generate=True
|
439 |
)
|
440 |
|
|
|
|
|
|
|
|
|
|
|
441 |
outputs = speaker.generate(
|
442 |
input_ids=s_input_tokens,
|
443 |
attention_mask=s_attn_mask,
|
models.py
CHANGED
@@ -11,7 +11,7 @@ def get_model():
|
|
11 |
# Initialize the model
|
12 |
repo = 'lil-lab/cogen'
|
13 |
checkpoint = "HuggingFaceM4/idefics2-8b"
|
14 |
-
model = Idefics2ForConditionalGeneration.from_pretrained(checkpoint, torch_dtype=torch.bfloat16)
|
15 |
|
16 |
# Add LoRA adapters
|
17 |
target_modules=r'(.*(vision_model|modality_projection|perceiver_resampler).*(out_proj|fc1|fc2|down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$)|(.*(k_proj|q_proj|v_proj).*$)'
|
@@ -39,7 +39,7 @@ def get_model():
|
|
39 |
)
|
40 |
model.add_adapter('final', lora_config)
|
41 |
model.load_adapter(repo, "final", revision="r3_full")
|
42 |
-
model = IdeficsJointInferenceModel(0.5, 0, model=model)
|
43 |
model.eval()
|
44 |
|
45 |
return model
|
|
|
11 |
# Initialize the model
|
12 |
repo = 'lil-lab/cogen'
|
13 |
checkpoint = "HuggingFaceM4/idefics2-8b"
|
14 |
+
model = Idefics2ForConditionalGeneration.from_pretrained(checkpoint, torch_dtype=torch.bfloat16)
|
15 |
|
16 |
# Add LoRA adapters
|
17 |
target_modules=r'(.*(vision_model|modality_projection|perceiver_resampler).*(out_proj|fc1|fc2|down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$)|(.*(k_proj|q_proj|v_proj).*$)'
|
|
|
39 |
)
|
40 |
model.add_adapter('final', lora_config)
|
41 |
model.load_adapter(repo, "final", revision="r3_full")
|
42 |
+
model = IdeficsJointInferenceModel(0.5, 0, model=model)
|
43 |
model.eval()
|
44 |
|
45 |
return model
|