Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,587 Bytes
2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 3e323c0 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import dataclasses
import logging
import os
from typing import Any, Dict, List
import gradio as gr
import PIL.Image as Image
import PIL.ImageOps as ImageOps
import spaces
import torch
from peft import PeftModel
from transformers import AutoProcessor
from transformers import Idefics2ForConditionalGeneration, Idefics2Processor
from adapter import IdeficsAdapter
from config_generator import GameConfig, generate_game_config
from utils import device, nested_to_device, sorted_list
import copy
### Constants
IMG_DIR = "tangram_pngs"
### Bot server
GEN_KWS: Dict[str, Any] = {
"max_new_tokens": 10,
"do_sample": True,
"temperature": 1.0,
"output_logits": True,
"return_dict_in_generate": True,
"remove_invalid_values": True, # just to be safe
"renormalize_logits": True,
"suppress_tokens": IdeficsAdapter.SUPPRESS_TOKEN_IDS
}
@spaces.GPU(duration=20)
def get_model_response( # predict
model: PeftModel, adapter_name: str, adapter: IdeficsAdapter,
image_paths: List[str], chat : str, chats: List[str],
previous_selected: List[List[str]]
) -> List[str]:
if model.active_adapter != adapter_name:
model.set_adapter(adapter_name)
model.to(device())
new_chats = chats + [chat]
currently_selected = previous_selected[-1] if len(previous_selected) > 0 else []
model_input: Dict[str, Any] = adapter.compose(
image_paths, new_chats, previous_selected, True, True)
model_input = nested_to_device(model_input)
with torch.inference_mode(), torch.autocast(device_type=device().type,
dtype=torch.bfloat16):
model_output = model.generate(**model_input, **GEN_KWS)
decoded_out: str = adapter.tokenizer.decode(
model_output.sequences[0], skip_special_tokens=True)
model_clicks = adapter.parse(
image_paths, decoded_out, currently_selected)
if len(model_clicks) == 0:
logging.warning("empty clicks by model")
model_clicks = [image_paths[0]]
logging.debug(f"{image_paths=}")
logging.debug(f"selecting {model_clicks}")
prob = -1
else:
prob = -3
logging.debug(f"{prob=}")
logging.info(f"User input: {chat}")
logging.info(f"Model selected: {model_clicks}")
logging.debug(f"Model output: {decoded_out}")
return model_clicks
def get_model() -> PeftModel:
model_id = 'lil-lab/respect'
checkpoint = "HuggingFaceM4/idefics2-8b"
model = Idefics2ForConditionalGeneration.from_pretrained(
checkpoint, torch_dtype=torch.bfloat16,)
peft_model = PeftModel.from_pretrained(
model, model_id, adapter_name="r6_bp", is_trainable=False, revision="r6_bp")
# Add other adapter - hack to avoid conflict
lora_config = copy.deepcopy(peft_model.active_peft_config)
targets = list(set(n[:n.find('lora')-1] for n, _ in model.named_parameters()
if 'lora' in n))
lora_config.target_modules = targets
peft_model.add_adapter("r0", lora_config)
peft_model.load_adapter(model_id, "r0", is_trainable=False, revision="r0",
peft_config=lora_config)
return peft_model
def get_processor() -> Idefics2Processor:
checkpoint = "HuggingFaceM4/idefics2-8b"
processor = AutoProcessor.from_pretrained(
checkpoint, do_image_splitting=False,
size={"longest_edge": 224, "shortest_edge": 224})
return processor
def get_adapter() -> IdeficsAdapter:
processor = get_processor()
return IdeficsAdapter(IMG_DIR, processor)
### Game logic
@dataclasses.dataclass(frozen=False)
class GameState:
config: GameConfig
adapter_name: str
chats: List[str]
currently_selected: List[str]
selected_accum: List[List[str]]
clicks_accum: List[List[str]]
turn: int = 0
def has_ended(self):
return self.has_successfully_ended() or self.turn >= 10
def has_successfully_ended(self):
return set(self.currently_selected) == set(self.config.targets)
### UI helpers
def serialize_conversation(self):
output = [f"Turn {i+1}: {message}"
for i, message in enumerate(self.chats)]
return "\n".join(output)
def markup_images(self):
context = self.config.speaker_context
targets = self.config.targets
selected = self.currently_selected
changes = self.selected_accum[-1] if len(self.selected_accum) > 0 else []
tangram_list = self._display_context(context, targets, changes, selected)
return tangram_list
@staticmethod
def _display_context(context: List[str], targets: List[str],
changes: List[str], selected: List[str]) -> List[Image.Image]:
tangram_list: List[Image.Image] = []
arrow = Image.open("yellow_circle.png").resize((20, 20)).convert("RGBA")
for img in context:
image = Image.open(os.path.join(IMG_DIR, img)).resize((60, 60)).convert("RGB")
image = ImageOps.expand(image, border=2, fill="white")
if img in targets and img in selected: # listener selected a target image
image = ImageOps.expand(image, border=10, fill="green")
elif img in targets and img not in selected: # unselected target:
image = ImageOps.expand(image, border=10, fill="black")
elif img in selected and img not in targets: # listener selected a wrong image
image = ImageOps.expand(image, border=10, fill="red")
else:
image = ImageOps.expand(image, border=10, fill="white")
image = ImageOps.expand(image, border=2, fill="white")
if img in changes:
image.paste(arrow, (68, 0), mask=arrow)
tangram_list.append(image)
return tangram_list
class GameFlow:
@classmethod
def initialize(cls, model_iteration: str) -> GameState:
config = generate_game_config()
adapter_name = "r0" if model_iteration == "Initial System" else "r6_bp"
state = GameState(
config=config,
adapter_name=adapter_name,
chats=[],
currently_selected=[],
selected_accum=[],
clicks_accum=[],
turn=0,
)
return state
@classmethod
def progress(cls, state: GameState, chat: str,
model: PeftModel,
adapter: IdeficsAdapter) -> GameState:
turn = state.turn
model_context_images = state.config.listener_context
model_clicks = get_model_response(
model, state.adapter_name, adapter,
model_context_images, chat,
state.chats, state.selected_accum
)
# symmetric difference (apply deselection, then selection)
currently_selected2 = sorted_list(
(set(state.currently_selected) - set(model_clicks)) \
| (set(model_clicks) - set(state.currently_selected))
)
state2 = GameState(
# constants
config=state.config,
adapter_name=state.adapter_name,
# updates
chats=state.chats.copy() + [chat],
currently_selected=currently_selected2,
selected_accum=state.selected_accum.copy() + [currently_selected2],
clicks_accum=state.clicks_accum.copy() + [model_clicks],
turn=turn+1,
)
return state2
### UI
def create_app_inner():
### layout
gr.Markdown("# Tangram Multi-Reference Game")
gr.Markdown(
'### You will be playing a multi-reference games against a model. \
To start a game, first select whether you wish to play against our \
initial trained model ("Initial System") or \
our model at the end of continual learning ("Final System") \
and press the "Start Game" button.')
gr.Markdown(
'You will take on a "speaker" role at each round. \
Your goal is to describe this image (via a message in the textbox) \
so that the model can guess what it is.\
Targets have black borders. \
Correctly selected targets have green borders. \
Incorrectly selected targets have red borders. \
Actions are marked with yellow dot. \
The listener cannot see boxes or colors and the order is different.')
gr.Markdown(
'### Press "Send" to submit your action to proceed to the next turn. \
You have 10 turns in total.')
with gr.Row():
model_iteration = gr.Radio(["Initial System", "Final System"],
label="Model Iteration",
value="Final System")
start_btn = gr.Button("Start Game")
status = gr.Textbox(label="Status", interactive=False, show_label=False,
text_align="center", value="Please start a game.")
with gr.Row():
image_output = gr.Gallery(
label="CONTEXT", show_label=False, elem_id="gallery",
columns=5, rows=2, object_fit="contain", height="250px",
allow_preview=False, container=True, interactive=False
)
with gr.Row():
conversation_output = gr.Textbox(label="Interaction History")
with gr.Column():
user_input = gr.Textbox(label="Your Message as Speaker", interactive=True)
send_btn = gr.Button("Send", interactive=True)
### globals
model = get_model()
adapter = get_adapter()
game_state = gr.State(value=None)
### callbacks
def output_from_state(state: GameState):
has_ended = state.has_ended()
success = "Success" if state.has_successfully_ended() else "Failure"
status = f"{success} (Turn {state.turn}/10) - Start another game?" \
if has_ended else f"Turn {state.turn+1}/10"
return (
state.markup_images(), # image_output
state.serialize_conversation(), # conversation_output
status, # status
gr.update(interactive=not has_ended, value=""), # user_input
gr.update(interactive=not has_ended), # send_btn
gr.update(interactive=has_ended), # model_iteration
state, # game_history
)
def on_start_interaction(model_iteration: str):
assert model_iteration in ["Initial System", "Final System"]
state = GameFlow.initialize(model_iteration)
return output_from_state(state)
def on_send_message(message: str, state: GameState):
nonlocal model
nonlocal adapter
if message.strip() == "":
logging.info("Empty message")
return output_from_state(state)
state = GameFlow.progress(state, message, model, adapter)
return output_from_state(state)
start_btn.click(
on_start_interaction,
inputs=[model_iteration],
outputs=[image_output, conversation_output, status,
user_input, send_btn, model_iteration, game_state],
queue=False
)
send_btn.click(
on_send_message,
inputs=[user_input, game_state],
outputs=[image_output, conversation_output, status,
user_input, send_btn, model_iteration, game_state],
queue=True
)
def create_app():
with gr.Blocks(theme='saq1b/gradio-theme') as app:
create_app_inner()
return app
if __name__ == "__main__":
app = create_app()
app.queue()
app.launch()
|