Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,195 Bytes
2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 87b7a45 2f56479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import logging
import re
from functools import cache
from pathlib import Path
from typing import List, Set, Tuple, TypeVar
import torch
from PIL import Image
from transformers import Idefics2Processor, PreTrainedTokenizer
from utils import device, nested_apply, sorted_list
RE_PATTERN = r'^(deselect\s[A-Z](?:\s[A-Z])*(?:\sselect\s[A-Z](?:\s[A-Z])*)?|select\s[A-Z](?:\s[A-Z])*)$' # noqa
# Name type, newtype of str. e.g. "page4-249.png"
N = TypeVar('N')
ALPHABET = 'ABCDEFGHIJ' # we only have 10 images
LEGAL_TOKEN_IDS = [2, 315, 330, 334, 365, 382, 384, 401, 413,
420, 475, 5339, 634, 17960, 32002] # A - J and <end_of_utterance> and <\s> and 'select' and 'deselect'
MINI_DECODER = {
384: 'D',
# 2: '</s>',
32002: '<end_of_utterance>',
420: 'G', 17960: 'elect',
330: 'A', 365: 'B', 334: 'C', 5339: 'select', 401: 'F', 475: 'J',
634: 'des', 315: 'I', 413: 'E', 382: 'H'}
class AlphabeticNameHash:
@cache
def __init__(self, context: List[N]) -> None:
self._forward_map = {im: ALPHABET[i] for i, im in enumerate(context)}
self._backward_map = {ALPHABET[i]: im for i, im in enumerate(context)}
def hash(self, im: N) -> str:
return self._forward_map[im]
def unhash(self, i: str) -> N:
return self._backward_map[i]
def valid_hash(self, i: str) -> bool:
return i in self._backward_map
class IdeficsAdapter:
PAD_TOKEN_ID = 0
LABEL_MASK_ID = 32001 # idefics2: image_token_id
LEGAL_TOKEN_IDS = LEGAL_TOKEN_IDS
LEGAL_TOKEN_MASK = torch.zeros(32003, requires_grad=False)\
.index_fill_(0, torch.tensor(LEGAL_TOKEN_IDS), 1).to(device=device(), dtype=torch.bool)
SUPPRESS_TOKEN_IDS = list(set(range(32003)) - set(LEGAL_TOKEN_IDS))
def __init__(self, image_folder: str, processor: Idefics2Processor) -> None:
self.t_max_length = 2048
self.image_folder = Path(image_folder)
self.image_cache = {}
self.processor = processor
self.tokenizer: PreTrainedTokenizer = self.processor.tokenizer # type: ignore
def get_image(self, im_name: N) -> Image.Image:
if im_name not in self.image_cache:
self.image_cache[im_name] = Image.open(
self.image_folder.joinpath(im_name))
return self.image_cache[im_name]
def unhash(self, context: List[N], c: str) -> N:
return AlphabeticNameHash(tuple(context)).unhash(c)
def valid_hash(self, context: List[N], c: str) -> bool:
return AlphabeticNameHash(tuple(context)).valid_hash(c)
def parse(self, context: List[N], decoded_out: str,
currently_selected: List[N]) -> List[str]:
h = AlphabeticNameHash(tuple(context))
logging.debug(f"{context=}")
# do inference
logging.debug(f"{decoded_out=}")
selection, deselection = self.parse_raw(decoded_out)
hashed_currently_selected = {h.hash(n) for n in currently_selected}
desel_to_remove = deselection - hashed_currently_selected
if len(desel_to_remove) > 0:
logging.debug(f"warn! {desel_to_remove=}")
deselection = deselection - desel_to_remove
sel_to_remove = selection & hashed_currently_selected
if len(sel_to_remove) > 0:
logging.debug(f"warn! {sel_to_remove=}")
selection = selection - sel_to_remove
logging.debug("post strict cleaning")
logging.debug(f"{selection=}")
logging.debug(f"{deselection=}")
model_clicks = selection | deselection
logging.debug(f"{model_clicks=}")
model_clicks_png = [h.unhash(n)
for n in model_clicks if h.valid_hash(n)]
logging.debug(f"{model_clicks_png=}")
return model_clicks_png
@staticmethod
def parse_raw(text: str) -> Tuple[Set[N], Set[N]]:
last_answer = text.strip()
if ":" in text:
last_answer_pattern = r":.*$"
xs = re.findall(last_answer_pattern, text)
last_answer = xs[0].removeprefix(":").strip()
xs = re.search(RE_PATTERN, last_answer)
if xs is None:
print(f"{last_answer=}")
print("did not pass regex")
return set(), set()
select_pattern = r"(?<!de)select( [A-J])+$"
xs = re.search(select_pattern, last_answer)
if xs is not None:
xs = xs.group()
selections: Set[N] = set(xs.split(" ")[1:]) if xs else set()
deselect_pattern = r"^deselect( [A-J])+"
xs = re.search(deselect_pattern, last_answer)
if xs is not None:
xs = xs.group()
deselections: Set[N] = set(xs.split(" ")[1:]) if xs else set()
return selections, deselections
def compose(self, context, chats, previous_selected, hash_images, padding):
select_accum, deselect_accum, clickss = self.unfold_select_deselect(
previous_selected)
select_accum = select_accum + [[]]
deselect_accum = deselect_accum + [[]]
previous_selected = [[]] + previous_selected # old states pre click
assert len(chats) == len(select_accum) == len(
deselect_accum) == len(previous_selected)
messages, images = self.build_processor_input(
context, chats, select_accum, deselect_accum, previous_selected, hash_images, omit_last_answer=True, sort_names=True, omit_context=False, chat_feedback=None)
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=True)
prompt = prompt.strip()
logging.debug(prompt)
# Keep consistent with train_script
inputs = self.processor(
text=prompt, images=images,
padding=padding, truncation=True, max_length=self.t_max_length,
return_tensors="pt")
return inputs
def build_processor_input(self, image_pngs: List[N], chats: List[str],
select_accum: List[List[N]],
deselect_accum: List[List[N]],
pre_click_selected_accum: List[List[N]],
hash_image: bool, omit_last_answer: bool,
sort_names: bool, omit_context: bool,
chat_feedback: str, ):
def _text_content(text): return {"type": "text", "text": text}
def _image_content(): return {"type": "image"}
def _user_prompt(content): return {"role": "user", "content": content}
def _assistant_prompt(content): return {
"role": "assistant", "content": content}
def _system_prompt(content): return {
"role": "system", "content": content}
def _current_state(selected: List[N]):
if len(selected) == 0:
return 'none is selected'
return f'{" ".join(selected)} currently selected'
def _listener_action(select: List[N], deselect: List[N]):
if len(select) == 0 and len(deselect) == 0:
return 'nothing'
if len(select) == 0:
return f'deselect {" ".join(deselect)}'
if len(deselect) == 0:
return f'select {" ".join(select)}'
return f'deselect {" ".join(deselect)} select {" ".join(select)}'
func = AlphabeticNameHash(tuple(image_pngs)).hash if hash_image else id
context, select_accum, deselect_accum, pre_click_selected_accum = nested_apply(
func, (image_pngs, select_accum, deselect_accum, pre_click_selected_accum))
prompt = []
images = []
if not omit_context:
images = [self.get_image(im) for im in image_pngs]
images_and_names_content = []
for im_name in context:
images_and_names_content.append(_image_content())
images_and_names_content.append(_text_content(im_name))
prompt.append(_system_prompt(images_and_names_content))
if not len(chats) == len(select_accum) == len(deselect_accum) == len(pre_click_selected_accum):
logging.error(f"{chats=}")
logging.error(f"{select_accum=}")
logging.error(f"{deselect_accum=}")
logging.error(f"{pre_click_selected_accum=}")
assert False
for i, (chat, select, deselect, pre_click_selected) in enumerate(
zip(chats, select_accum, deselect_accum, pre_click_selected_accum)):
if sort_names:
select = sorted(select)
deselect = sorted(deselect)
pre_click_selected = sorted(pre_click_selected)
prompt.append(_system_prompt(
[_text_content(_current_state(pre_click_selected))]))
prompt.append(_user_prompt([_text_content(chat)]))
prompt.append(_assistant_prompt(
[_text_content(_listener_action(select, deselect))]))
if omit_last_answer:
# idefics2 has processor.apply_chat_template(messages, add_generation_prompt=True) instead
prompt.pop(-1)
if chat_feedback is not None:
prompt.append(_user_prompt([_text_content(chat_feedback)]))
return prompt, images
def unfold_select_deselect(self, previous_selected: List[List[N]]) -> Tuple[List[N], List[N], List[N]]:
# currently selected AFTER i-th turn
num_turns = len(previous_selected)
selected: List[List[str]] = [] # turn-wise selection
deselected: List[List[str]] = [] # turn-wise deselection
clicks: List[List[str]] = []
# combining turn-wise newly selected and newly deselected
prev_selected = set()
for turn in range(num_turns):
curr_selected = set(previous_selected[turn])
newly_selected = curr_selected - prev_selected
newly_deselected = prev_selected - curr_selected
selected.append(sorted_list(newly_selected))
deselected.append(sorted_list(newly_deselected))
clicks.append(sorted_list(newly_selected | newly_deselected))
prev_selected = curr_selected.copy()
return selected, deselected, clicks
|