Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -6,50 +6,68 @@ from tqdm import tqdm
|
|
6 |
import uvicorn
|
7 |
from dotenv import load_dotenv
|
8 |
from difflib import SequenceMatcher
|
9 |
-
import
|
10 |
|
|
|
11 |
load_dotenv()
|
12 |
|
|
|
13 |
app = FastAPI()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
15 |
# Configuración de los modelos
|
16 |
model_configs = [
|
17 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
|
18 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
|
19 |
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
|
|
|
20 |
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"},
|
21 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf"},
|
|
|
22 |
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"},
|
23 |
-
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"}
|
24 |
]
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
class ChatRequest(BaseModel):
|
48 |
message: str
|
49 |
top_k: int = 50
|
50 |
top_p: float = 0.95
|
51 |
temperature: float = 0.7
|
52 |
|
|
|
53 |
def generate_chat_response(request, llm):
|
54 |
try:
|
55 |
user_input = normalize_input(request.message)
|
@@ -67,32 +85,48 @@ def generate_chat_response(request, llm):
|
|
67 |
def normalize_input(input_text):
|
68 |
return input_text.strip()
|
69 |
|
70 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
seen = set()
|
72 |
unique_responses = []
|
73 |
for response in responses:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
seen.add(line)
|
79 |
-
unique_lines.add(line)
|
80 |
-
unique_responses.append('\n'.join(unique_lines))
|
81 |
return unique_responses
|
82 |
|
83 |
def select_best_response(responses):
|
84 |
print("Filtrando respuestas...")
|
85 |
-
|
86 |
-
|
|
|
87 |
coherent_responses = filter_by_coherence(unique_responses)
|
88 |
best_response = filter_by_similarity(coherent_responses)
|
89 |
return best_response
|
90 |
|
91 |
def filter_by_coherence(responses):
|
92 |
-
#
|
|
|
|
|
93 |
return responses
|
94 |
|
95 |
def filter_by_similarity(responses):
|
|
|
|
|
96 |
responses.sort(key=len, reverse=True)
|
97 |
best_response = responses[0]
|
98 |
for i in range(1, len(responses)):
|
@@ -103,7 +137,7 @@ def filter_by_similarity(responses):
|
|
103 |
return best_response
|
104 |
|
105 |
def worker_function(llm, request, progress_bar):
|
106 |
-
print(f"Generando respuesta con el modelo...")
|
107 |
response = generate_chat_response(request, llm)
|
108 |
progress_bar.update(1)
|
109 |
return response
|
@@ -116,11 +150,11 @@ async def generate_chat(request: ChatRequest):
|
|
116 |
print(f"Procesando solicitud: {request.message}")
|
117 |
|
118 |
responses = []
|
119 |
-
num_models = len(
|
120 |
|
121 |
with tqdm(total=num_models, desc="Generando respuestas", unit="modelo") as progress_bar:
|
122 |
with ThreadPoolExecutor(max_workers=num_models) as executor:
|
123 |
-
futures = [executor.submit(worker_function, llm, request, progress_bar) for llm in
|
124 |
for future in as_completed(futures):
|
125 |
try:
|
126 |
response = future.result()
|
|
|
6 |
import uvicorn
|
7 |
from dotenv import load_dotenv
|
8 |
from difflib import SequenceMatcher
|
9 |
+
import re
|
10 |
|
11 |
+
# Cargar variables de entorno
|
12 |
load_dotenv()
|
13 |
|
14 |
+
# Inicializar aplicación FastAPI
|
15 |
app = FastAPI()
|
16 |
|
17 |
+
# Diccionario global para almacenar los modelos
|
18 |
+
global_data = {
|
19 |
+
'models': []
|
20 |
+
}
|
21 |
+
|
22 |
# Configuración de los modelos
|
23 |
model_configs = [
|
24 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
|
25 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
|
26 |
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
|
27 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
|
28 |
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"},
|
29 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf"},
|
30 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf"},
|
31 |
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"},
|
32 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"}
|
33 |
]
|
34 |
|
35 |
+
# Clase para gestionar modelos
|
36 |
+
class ModelManager:
|
37 |
+
def __init__(self):
|
38 |
+
self.models = []
|
39 |
+
|
40 |
+
def load_model(self, model_config):
|
41 |
+
print(f"Cargando modelo {model_config['repo_id']}...")
|
42 |
+
return Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
|
43 |
+
|
44 |
+
def load_all_models(self):
|
45 |
+
print("Iniciando carga de modelos...")
|
46 |
+
with ThreadPoolExecutor(max_workers=len(model_configs)) as executor:
|
47 |
+
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
48 |
+
models = []
|
49 |
+
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
|
50 |
+
try:
|
51 |
+
model = future.result()
|
52 |
+
models.append(model)
|
53 |
+
print(f"Modelo cargado exitosamente: {model_configs[len(models)-1]['repo_id']}")
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error al cargar el modelo: {e}")
|
56 |
+
print("Todos los modelos han sido cargados.")
|
57 |
+
return models
|
58 |
+
|
59 |
+
# Instanciar ModelManager y cargar modelos
|
60 |
+
model_manager = ModelManager()
|
61 |
+
global_data['models'] = model_manager.load_all_models()
|
62 |
+
|
63 |
+
# Modelo global para la solicitud de chat
|
64 |
class ChatRequest(BaseModel):
|
65 |
message: str
|
66 |
top_k: int = 50
|
67 |
top_p: float = 0.95
|
68 |
temperature: float = 0.7
|
69 |
|
70 |
+
# Función para generar respuestas de chat
|
71 |
def generate_chat_response(request, llm):
|
72 |
try:
|
73 |
user_input = normalize_input(request.message)
|
|
|
85 |
def normalize_input(input_text):
|
86 |
return input_text.strip()
|
87 |
|
88 |
+
def remove_duplicates(text):
|
89 |
+
# Eliminar patrones repetitivos específicos
|
90 |
+
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
|
91 |
+
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
|
92 |
+
|
93 |
+
# Eliminar el marcador [/INST]
|
94 |
+
text = text.replace('[/INST]', '')
|
95 |
+
|
96 |
+
# Generaliza la eliminación de duplicados
|
97 |
+
lines = text.split('\n')
|
98 |
+
unique_lines = list(dict.fromkeys(lines))
|
99 |
+
return '\n'.join(unique_lines).strip()
|
100 |
+
|
101 |
+
def remove_repetitive_responses(responses):
|
102 |
+
# Filtra respuestas repetitivas
|
103 |
seen = set()
|
104 |
unique_responses = []
|
105 |
for response in responses:
|
106 |
+
normalized_response = remove_duplicates(response)
|
107 |
+
if normalized_response not in seen:
|
108 |
+
seen.add(normalized_response)
|
109 |
+
unique_responses.append(normalized_response)
|
|
|
|
|
|
|
110 |
return unique_responses
|
111 |
|
112 |
def select_best_response(responses):
|
113 |
print("Filtrando respuestas...")
|
114 |
+
responses = remove_repetitive_responses(responses)
|
115 |
+
responses = [remove_duplicates(response) for response in responses]
|
116 |
+
unique_responses = list(set(responses))
|
117 |
coherent_responses = filter_by_coherence(unique_responses)
|
118 |
best_response = filter_by_similarity(coherent_responses)
|
119 |
return best_response
|
120 |
|
121 |
def filter_by_coherence(responses):
|
122 |
+
# Ordenar respuestas por longitud y similaridad para coherencia básica
|
123 |
+
print("Ordenando respuestas por coherencia...")
|
124 |
+
responses.sort(key=len, reverse=True)
|
125 |
return responses
|
126 |
|
127 |
def filter_by_similarity(responses):
|
128 |
+
# Seleccionar la respuesta más coherente y única
|
129 |
+
print("Filtrando respuestas por similitud...")
|
130 |
responses.sort(key=len, reverse=True)
|
131 |
best_response = responses[0]
|
132 |
for i in range(1, len(responses)):
|
|
|
137 |
return best_response
|
138 |
|
139 |
def worker_function(llm, request, progress_bar):
|
140 |
+
print(f"Generando respuesta con el modelo {llm}...")
|
141 |
response = generate_chat_response(request, llm)
|
142 |
progress_bar.update(1)
|
143 |
return response
|
|
|
150 |
print(f"Procesando solicitud: {request.message}")
|
151 |
|
152 |
responses = []
|
153 |
+
num_models = len(global_data['models'])
|
154 |
|
155 |
with tqdm(total=num_models, desc="Generando respuestas", unit="modelo") as progress_bar:
|
156 |
with ThreadPoolExecutor(max_workers=num_models) as executor:
|
157 |
+
futures = [executor.submit(worker_function, llm, request, progress_bar) for llm in global_data['models']]
|
158 |
for future in as_completed(futures):
|
159 |
try:
|
160 |
response = future.result()
|