Spaces:
Running
Running
File size: 73,828 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 |
import os
import random
import gradio as gr
import time
import torch
import gc
import warnings
warnings.filterwarnings('ignore')
from zhconv import convert
from LLM import LLM
from TTS import EdgeTTS
from src.cost_time import calculate_time
from configs import *
os.environ["GRADIO_TEMP_DIR"]= './temp'
os.environ["WEBUI"] = "true"
def get_title(title = 'Linly 智能对话系统 (Linly-Talker)'):
description = f"""
<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px;">{title}</span>
<br>
<span style="font-size: 18px;" id="paper-info">
[<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>]
[<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>]
[<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>]
[<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>]
</span>
<br>
<span>Linly-Talker是一款创新的数字人对话系统,它融合了最新的人工智能技术,包括大型语言模型(LLM)🤖、自动语音识别(ASR)🎙️、文本到语音转换(TTS)🗣️和语音克隆技术🎤。</span>
</p>
"""
return description
# 设置默认system
default_system = '你是一个很有帮助的助手'
# 设置默认的prompt
prefix_prompt = '''请用少于25个字回答以下问题\n\n'''
edgetts = EdgeTTS()
# 设定默认参数值,可修改
blink_every = True
size_of_image = 256
preprocess_type = 'crop'
facerender = 'facevid2vid'
enhancer = False
is_still_mode = False
exp_weight = 1
use_ref_video = False
ref_video = None
ref_info = 'pose'
use_idle_mode = False
length_of_audio = 5
@calculate_time
def Asr(audio):
try:
question = asr.transcribe(audio)
question = convert(question, 'zh-cn')
except Exception as e:
print("ASR Error: ", e)
question = 'Gradio存在一些bug,麦克风模式有时候可能音频还未传入,请重新点击一下语音识别即可'
gr.Warning(question)
return question
def clear_memory():
"""
清理PyTorch的显存和系统内存缓存。
"""
# 1. 清理缓存的变量
gc.collect() # 触发Python垃圾回收
torch.cuda.empty_cache() # 清理PyTorch的显存缓存
torch.cuda.ipc_collect() # 清理PyTorch的跨进程通信缓存
# 2. 打印显存使用情况(可选)
print(f"Memory allocated: {torch.cuda.memory_allocated() / (1024 ** 2):.2f} MB")
print(f"Max memory allocated: {torch.cuda.max_memory_allocated() / (1024 ** 2):.2f} MB")
print(f"Cached memory: {torch.cuda.memory_reserved() / (1024 ** 2):.2f} MB")
print(f"Max cached memory: {torch.cuda.max_memory_reserved() / (1024 ** 2):.2f} MB")
@calculate_time
def TTS_response(text,
voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut,
question_audio, question, use_mic_voice,
tts_method = 'PaddleTTS', save_path = 'answer.wav'):
# print(text, voice, rate, volume, pitch, am, voc, lang, male, tts_method, save_path)
if tts_method == 'Edge-TTS':
if not edgetts.network:
gr.Warning("请检查网络或者使用其他模型,例如PaddleTTS")
return None, None
try:
edgetts.predict(text, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt')
except:
os.system(f'edge-tts --text "{text}" --voice {voice} --write-media answer.wav --write-subtitles answer.vtt')
return 'answer.wav', 'answer.vtt'
elif tts_method == 'PaddleTTS':
tts.predict(text, am, voc, lang = lang, male=male, save_path = save_path)
return save_path, None
elif tts_method == 'GPT-SoVITS克隆声音':
if use_mic_voice:
try:
vits.predict(ref_wav_path = question_audio,
prompt_text = question,
prompt_language = "中文",
text = text, # 回答
text_language = "中文",
how_to_cut = "凑四句一切",
save_path = 'answer.wav')
return 'answer.wav', None
except Exception as e:
gr.Warning("无克隆环境或者无克隆模型权重,无法克隆声音", e)
return None, None
else:
try:
vits.predict(ref_wav_path = inp_ref,
prompt_text = prompt_text,
prompt_language = prompt_language,
text = text, # 回答
text_language = text_language,
how_to_cut = how_to_cut,
save_path = 'answer.wav')
return 'answer.wav', None
except Exception as e:
gr.Warning("无克隆环境或者无克隆模型权重,无法克隆声音", e)
return None, None
return None, None
@calculate_time
def LLM_response(question_audio, question,
voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0,
am='fastspeech2', voc='pwgan',lang='zh', male=False,
inp_ref = None, prompt_text = "", prompt_language = "", text_language = "", how_to_cut = "", use_mic_voice = False,
tts_method = 'Edge-TTS'):
if len(question) == 0:
gr.Warning("请输入问题")
return None, None, None
answer = llm.generate(question, default_system)
print(answer)
driven_audio, driven_vtt = TTS_response(answer, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, question_audio, question, use_mic_voice,
tts_method)
return driven_audio, driven_vtt, answer
@calculate_time
def Talker_response(question_audio = None, method = 'SadTalker', text = '',
voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 100, pitch = 0,
am = 'fastspeech2', voc = 'pwgan', lang = 'zh', male = False,
inp_ref = None, prompt_text = "", prompt_language = "", text_language = "", how_to_cut = "", use_mic_voice = False,
tts_method = 'Edge-TTS',batch_size = 2, character = '女性角色',
progress=gr.Progress(track_tqdm=True)):
default_voice = None
if character == '女性角色':
# 女性角色
source_image, pic_path = r'inputs/girl.png', r'inputs/girl.png'
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png"
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat"
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663])
default_voice = 'zh-CN-XiaoxiaoNeural'
elif character == '男性角色':
# 男性角色
source_image = r'./inputs/boy.png'
pic_path = "./inputs/boy.png"
crop_pic_path = "./inputs/first_frame_dir_boy/boy.png"
first_coeff_path = "./inputs/first_frame_dir_boy/boy.mat"
crop_info = ((876, 747), (0, 0, 886, 838), [10.382158280494476, 0, 886, 747.7078990925525])
default_voice = 'zh-CN-YunyangNeural'
else:
gr.Warning('未知角色')
return None
voice = default_voice if not voice else voice
if not voice:
gr.Warning('请选择声音')
driven_audio, driven_vtt, _ = LLM_response(question_audio, text,
voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method)
if driven_audio is None:
gr.Warning("音频没有正常生成,请检查TTS是否正确")
return None
if method == 'SadTalker':
pose_style = random.randint(0, 45)
video = talker.test(pic_path,
crop_pic_path,
first_coeff_path,
crop_info,
source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=20)
elif method == 'Wav2Lip':
video = talker.predict(crop_pic_path, driven_audio, batch_size, enhancer)
elif method == 'NeRFTalk':
video = talker.predict(driven_audio)
else:
gr.Warning("不支持的方法:" + method)
return None
if driven_vtt:
return video, driven_vtt
else:
return video
@calculate_time
def Talker_response_img(question_audio, method, text, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref , prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method,
source_image,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
blink_every,
fps, progress=gr.Progress(track_tqdm=True)
):
if enhancer:
gr.Warning("记得请先安装GFPGAN库,pip install gfpgan, 已安装可忽略")
if not voice:
gr.Warning("请先选择声音")
driven_audio, driven_vtt, _ = LLM_response(question_audio, text, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method = tts_method)
if driven_audio is None:
gr.Warning("音频没有正常生成,请检查TTS是否正确")
return None
if method == 'SadTalker':
video = talker.test2(source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=fps)
elif method == 'Wav2Lip':
video = talker.predict(source_image, driven_audio, batch_size)
elif method == 'NeRFTalk':
video = talker.predict(driven_audio)
else:
return None
if driven_vtt:
return video, driven_vtt
else:
return video
@calculate_time
def Talker_Say(preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
blink_every,
fps,source_image = None, source_video = None, question_audio = None, method = 'SadTalker', text = '',
voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 100, pitch = 0,
am = 'fastspeech2', voc = 'pwgan', lang = 'zh', male = False,
inp_ref = None, prompt_text = "", prompt_language = "", text_language = "", how_to_cut = "", use_mic_voice = False,
tts_method = 'Edge-TTS', character = '女性角色',
progress=gr.Progress(track_tqdm=True)):
if source_video:
source_image = source_video
default_voice = None
voice = default_voice if not voice else voice
if not voice:
gr.Warning('请选择声音')
driven_audio, driven_vtt = TTS_response(text, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, question_audio, text, use_mic_voice,
tts_method)
if driven_audio is None:
gr.Warning("音频没有正常生成,请检查TTS是否正确")
return None
if method == 'SadTalker':
pose_style = random.randint(0, 45)
video = talker.test2(source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=fps)
elif method == 'Wav2Lip':
video = talker.predict(source_image, driven_audio, batch_size, enhancer)
elif method == 'NeRFTalk':
video = talker.predict(driven_audio)
else:
gr.Warning("不支持的方法:" + method)
return None
if driven_vtt:
return video, driven_vtt
else:
return video
def chat_response(system, message, history):
# response = llm.generate(message)
response, history = llm.chat(system, message, history)
print(history)
# 流式输出
for i in range(len(response)):
time.sleep(0.01)
yield "", history[:-1] + [(message, response[:i+1])]
return "", history
def modify_system_session(system: str) -> str:
if system is None or len(system) == 0:
system = default_system
llm.clear_history()
return system, system, []
def clear_session():
# clear history
llm.clear_history()
return '', []
def human_response(source_image, history, question_audio, talker_method, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, character,
preprocess_type, is_still_mode, enhancer, batch_size, size_of_image,
pose_style, facerender, exp_weight, blink_every, fps = 20, progress=gr.Progress(track_tqdm=True)):
response = history[-1][1]
qusetion = history[-1][0]
# driven_audio, video_vtt = 'answer.wav', 'answer.vtt'
if character == '女性角色':
# 女性角色
source_image, pic_path = r'./inputs/girl.png', r"./inputs/girl.png"
crop_pic_path = "./inputs/first_frame_dir_girl/girl.png"
first_coeff_path = "./inputs/first_frame_dir_girl/girl.mat"
crop_info = ((403, 403), (19, 30, 502, 513), [40.05956541381802, 40.17324339233366, 443.7892505041507, 443.9029284826663])
default_voice = 'zh-CN-XiaoxiaoNeural'
elif character == '男性角色':
# 男性角色
source_image = r'./inputs/boy.png'
pic_path = "./inputs/boy.png"
crop_pic_path = "./inputs/first_frame_dir_boy/boy.png"
first_coeff_path = "./inputs/first_frame_dir_boy/boy.mat"
crop_info = ((876, 747), (0, 0, 886, 838), [10.382158280494476, 0, 886, 747.7078990925525])
default_voice = 'zh-CN-YunyangNeural'
elif character == '自定义角色':
if source_image is None:
gr.Error("自定义角色需要上传正确的图片")
return None
default_voice = 'zh-CN-XiaoxiaoNeural'
voice = default_voice if not voice else voice
# tts.predict(response, voice, rate, volume, pitch, driven_audio, video_vtt)
driven_audio, driven_vtt = TTS_response(response, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, question_audio, qusetion, use_mic_voice,
tts_method)
if driven_audio is None:
gr.Warning("音频没有正常生成,请检查TTS是否正确")
return None
if talker_method == 'SadTalker':
pose_style = random.randint(0, 45)
video = talker.test(pic_path,
crop_pic_path,
first_coeff_path,
crop_info,
source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
use_ref_video,
ref_video,
ref_info,
use_idle_mode,
length_of_audio,
blink_every,
fps=fps)
elif talker_method == 'Wav2Lip':
video = talker.predict(crop_pic_path, driven_audio, batch_size, enhancer)
elif talker_method == 'NeRFTalk':
video = talker.predict(driven_audio)
else:
gr.Warning("不支持的方法:" + talker_method)
return None
if driven_vtt:
return video, driven_vtt
else:
return video
@calculate_time
def MuseTalker_response(source_video, bbox_shift, question_audio = None, text = '',
voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 100, pitch = 0,
am = 'fastspeech2', voc = 'pwgan', lang = 'zh', male = False,
inp_ref = None, prompt_text = "", prompt_language = "", text_language = "", how_to_cut = "", use_mic_voice = False,
tts_method = 'Edge-TTS', batch_size = 4,
progress=gr.Progress(track_tqdm=True)):
default_voice = None
voice = default_voice if not voice else voice
if not voice:
gr.Warning('请选择声音')
driven_audio, driven_vtt, _ = LLM_response(question_audio, text,
voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method)
print(driven_audio, driven_vtt)
video = musetalker.inference_noprepare(driven_audio,
source_video,
bbox_shift,
batch_size,
fps = 25)
if driven_vtt:
return (video, driven_vtt)
else:
return video
GPT_SoVITS_ckpt = "GPT_SoVITS/pretrained_models"
def load_vits_model(gpt_path, sovits_path, progress=gr.Progress(track_tqdm=True)):
global vits
print("模型加载中...", gpt_path, sovits_path)
all_gpt_path, all_sovits_path = os.path.join(GPT_SoVITS_ckpt, gpt_path), os.path.join(GPT_SoVITS_ckpt, sovits_path)
vits.load_model(all_gpt_path, all_sovits_path)
gr.Info("模型加载成功")
return gpt_path, sovits_path
def list_models(dir, endwith = ".pth"):
list_folder = os.listdir(dir)
list_folder = [i for i in list_folder if i.endswith(endwith)]
return list_folder
def character_change(character):
if character == '女性角色':
# 女性角色
source_image = r'./inputs/girl.png'
elif character == '男性角色':
# 男性角色
source_image = r'./inputs/boy.png'
elif character == '自定义角色':
# gr.Warnings("自定义角色暂未更新,请继续关注后续,可通过自由上传图片模式进行自定义角色")
source_image = None
return source_image
def webui_setting(talk = False):
if not talk:
with gr.Tabs():
with gr.TabItem('数字人形象设定'):
source_image = gr.Image(label="Source image", type="filepath")
else:
source_image = None
with gr.Tabs("TTS Method"):
with gr.Accordion("TTS Method语音方法调节 ", open=True):
with gr.Tab("Edge-TTS"):
voice = gr.Dropdown(edgetts.SUPPORTED_VOICE,
value='zh-CN-XiaoxiaoNeural',
label="Voice 声音选择")
rate = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1.0,
label='Rate 速率')
volume = gr.Slider(minimum=0,
maximum=100,
value=100,
step=1,
label='Volume 音量')
pitch = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1,
label='Pitch 音调')
with gr.Tab("PaddleTTS"):
am = gr.Dropdown(["FastSpeech2"], label="声学模型选择", value = 'FastSpeech2')
voc = gr.Dropdown(["PWGan", "HifiGan"], label="声码器选择", value = 'PWGan')
lang = gr.Dropdown(["zh", "en", "mix", "canton"], label="语言选择", value = 'zh')
male = gr.Checkbox(label="男声(Male)", value=False)
with gr.Tab('GPT-SoVITS'):
with gr.Row():
gpt_path = gr.FileExplorer(root = GPT_SoVITS_ckpt, glob = "*.ckpt", value = "s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", file_count='single', label="GPT模型路径")
sovits_path = gr.FileExplorer(root = GPT_SoVITS_ckpt, glob = "*.pth", value = "s2G488k.pth", file_count='single', label="SoVITS模型路径")
# gpt_path = gr.Dropdown(choices=list_models(GPT_SoVITS_ckpt, 'ckpt'))
# sovits_path = gr.Dropdown(choices=list_models(GPT_SoVITS_ckpt, 'pth'))
# gpt_path = gr.Textbox(label="GPT模型路径",
# value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
# sovits_path = gr.Textbox(label="SoVITS模型路径",
# value="GPT_SoVITS/pretrained_models/s2G488k.pth")
button = gr.Button("加载模型")
button.click(fn = load_vits_model,
inputs=[gpt_path, sovits_path],
outputs=[gpt_path, sovits_path])
with gr.Row():
inp_ref = gr.Audio(label="请上传3~10秒内参考音频,超过会报错!", sources=["microphone", "upload"], type="filepath")
use_mic_voice = gr.Checkbox(label="使用语音问答的麦克风")
prompt_text = gr.Textbox(label="参考音频的文本", value="")
prompt_language = gr.Dropdown(
label="参考音频的语种", choices=["中文", "英文", "日文"], value="中文"
)
asr_button = gr.Button("语音识别 - 克隆参考音频")
asr_button.click(fn=Asr,inputs=[inp_ref],outputs=[prompt_text])
with gr.Row():
text_language = gr.Dropdown(
label="需要合成的语种", choices=["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"], value="中文"
)
how_to_cut = gr.Dropdown(
label="怎么切",
choices=["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切" ],
value="凑四句一切",
interactive=True,
)
with gr.Column(variant='panel'):
batch_size = gr.Slider(minimum=1,
maximum=10,
value=2,
step=1,
label='Talker Batch size')
character = gr.Radio(['女性角色',
'男性角色',
'自定义角色'],
label="角色选择", value='自定义角色')
character.change(fn = character_change, inputs=[character], outputs = [source_image])
tts_method = gr.Radio(['Edge-TTS', 'PaddleTTS', 'GPT-SoVITS克隆声音', 'Comming Soon!!!'], label="Text To Speech Method",
value = 'Edge-TTS')
tts_method.change(fn = tts_model_change, inputs=[tts_method], outputs = [tts_method])
asr_method = gr.Radio(choices = ['Whisper-tiny', 'Whisper-base', 'FunASR', 'Comming Soon!!!'], value='Whisper-base', label = '语音识别模型选择')
asr_method.change(fn = asr_model_change, inputs=[asr_method], outputs = [asr_method])
talker_method = gr.Radio(choices = ['SadTalker', 'Wav2Lip', 'NeRFTalk', 'Comming Soon!!!'],
value = 'SadTalker', label = '数字人模型选择')
talker_method.change(fn = talker_model_change, inputs=[talker_method], outputs = [talker_method])
llm_method = gr.Dropdown(choices = ['Qwen', 'Qwen2', 'Linly', 'Gemini', 'ChatGLM', 'ChatGPT', 'GPT4Free', '直接回复 Direct Reply', 'Comming Soon!!!'], value = '直接回复 Direct Reply', label = 'LLM 模型选择')
llm_method.change(fn = llm_model_change, inputs=[llm_method], outputs = [llm_method])
return (source_image, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character, talker_method, asr_method, llm_method)
def exmaple_setting(asr, text, character, talk , tts, voice, llm):
# 默认text的Example
examples = [
['Whisper-base', '应对压力最有效的方法是什么?', '女性角色', 'SadTalker', 'Edge-TTS', 'zh-CN-XiaoxiaoNeural', '直接回复 Direct Reply'],
['Whisper-tiny', '应对压力最有效的方法是什么?', '女性角色', 'SadTalker', 'PaddleTTS', 'None', '直接回复 Direct Reply'],
['Whisper-base', '应对压力最有效的方法是什么?', '女性角色', 'SadTalker', 'Edge-TTS', 'zh-CN-XiaoxiaoNeural', 'Qwen'],
['FunASR', '如何进行时间管理?','男性角色', 'SadTalker', 'Edge-TTS', 'zh-CN-YunyangNeural', 'Qwen'],
['Whisper-tiny', '为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?','女性角色', 'Wav2Lip', 'PaddleTTS', 'None', 'Qwen'],
]
with gr.Row(variant='panel'):
with gr.Column(variant='panel'):
gr.Markdown("## Test Examples")
gr.Examples(
examples = examples,
inputs = [asr, text, character, talk , tts, voice, llm],
)
def app():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 文本/语音对话"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
(source_image, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character, talker_method, asr_method, llm_method)= webui_setting()
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('对话'):
with gr.Group():
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="输入文字/问题", lines=3)
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
# with gr.TabItem('SadTalker数字人参数设置'):
# with gr.Accordion("Advanced Settings",
# open=False):
# gr.Markdown("SadTalker: need help? please visit our [[best practice page](https://github.com/OpenTalker/SadTalker/blob/main/docs/best_practice.md)] for more detials")
# with gr.Column(variant='panel'):
# # width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# # height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
# with gr.Row():
# pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
# exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) #
# blink_every = gr.Checkbox(label="use eye blink", value=True)
# with gr.Row():
# size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model? 256 is faster") #
# preprocess_type = gr.Radio(['crop', 'resize','full'], value='full', label='preprocess', info="How to handle input image?")
# with gr.Row():
# is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
# facerender = gr.Radio(['facevid2vid'], value='facevid2vid', label='facerender', info="which face render?")
# with gr.Row():
# # batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=1)
# fps = gr.Slider(label='fps in generation', step=1, maximum=30, value =20)
# enhancer = gr.Checkbox(label="GFPGAN as Face enhancer(slow)")
with gr.Tabs():
with gr.TabItem('数字人问答'):
gen_video = gr.Video(label="生成视频", format="mp4", autoplay=False)
video_button = gr.Button("🎬 生成数字人视频", variant='primary')
video_button.click(fn=Talker_response,inputs=[question_audio, talker_method, input_text, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character],outputs=[gen_video])
exmaple_setting(asr_method, input_text, character, talker_method, tts_method, voice, llm_method)
return inference
def app_multi():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 多轮GPT对话"))
with gr.Row():
with gr.Column():
(source_image, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character, talker_method, asr_method, llm_method)= webui_setting()
video = gr.Video(label = '数字人问答', scale = 0.5)
video_button = gr.Button("🎬 生成数字人视频(对话后)", variant = 'primary')
with gr.Column():
with gr.Tabs(elem_id="sadtalker_checkbox"):
with gr.TabItem('SadTalker数字人参数设置'):
with gr.Accordion("Advanced Settings",
open=False):
gr.Markdown("SadTalker: need help? please visit our [[best practice page](https://github.com/OpenTalker/SadTalker/blob/main/docs/best_practice.md)] for more detials")
with gr.Column(variant='panel'):
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
with gr.Row():
pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) #
blink_every = gr.Checkbox(label="use eye blink", value=True)
with gr.Row():
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model? 256 is faster") #
preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")
with gr.Row():
is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
facerender = gr.Radio(['facevid2vid'], value='facevid2vid', label='facerender', info="which face render?")
with gr.Row():
fps = gr.Slider(label='fps in generation', step=1, maximum=30, value =20)
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer(slow)")
with gr.Row():
with gr.Column(scale=3):
system_input = gr.Textbox(value=default_system, lines=1, label='System (设定角色)')
with gr.Column(scale=1):
modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2)
system_state = gr.Textbox(value=default_system, visible=False)
chatbot = gr.Chatbot(height=400, show_copy_button=True)
with gr.Group():
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label='语音对话', autoplay=False)
asr_text = gr.Button('🎤 语音识别(语音对话后点击)')
# 创建一个文本框组件,用于输入 prompt。
msg = gr.Textbox(label="Prompt/问题")
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[msg])
with gr.Row():
clear_history = gr.Button("🧹 清除历史对话")
sumbit = gr.Button("🚀 发送", variant = 'primary')
# 设置按钮的点击事件。当点击时,调用上面定义的 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。
sumbit.click(chat_response, inputs=[system_input, msg, chatbot],
outputs=[msg, chatbot])
# 点击后清空后端存储的聊天记录
clear_history.click(fn = clear_session, outputs = [msg, chatbot])
# 设置system并清除历史对话
modify_system.click(fn=modify_system_session,
inputs=[system_input],
outputs=[system_state, system_input, chatbot])
video_button.click(fn = human_response, inputs = [source_image, chatbot, question_audio, talker_method, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, character,preprocess_type,
is_still_mode, enhancer, batch_size, size_of_image,
pose_style, facerender, exp_weight, blink_every, fps], outputs = [video])
exmaple_setting(asr_method, msg, character, talker_method, tts_method, voice, llm_method)
return inference
def app_img():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 个性化角色互动"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
(source_image, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character, talker_method, asr_method, llm_method)= webui_setting()
# driven_audio = 'answer.wav'
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('对话'):
with gr.Group():
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="输入文字/问题", lines=3)
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
with gr.Tabs(elem_id="text_examples"):
gr.Markdown("## Text Examples")
examples = [
['应对压力最有效的方法是什么?'],
['如何进行时间管理?'],
['为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?'],
]
gr.Examples(
examples = examples,
inputs = [input_text],
)
with gr.Tabs(elem_id="sadtalker_checkbox"):
with gr.TabItem('SadTalker数字人参数设置'):
with gr.Accordion("Advanced Settings",
open=False):
gr.Markdown("SadTalker: need help? please visit our [[best practice page](https://github.com/OpenTalker/SadTalker/blob/main/docs/best_practice.md)] for more detials")
with gr.Column(variant='panel'):
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
with gr.Row():
pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) #
blink_every = gr.Checkbox(label="use eye blink", value=True)
with gr.Row():
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model? 256 is faster") #
preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")
with gr.Row():
is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
facerender = gr.Radio(['facevid2vid'], value='facevid2vid', label='facerender', info="which face render?")
with gr.Row():
fps = gr.Slider(label='fps in generation', step=1, maximum=30, value =20)
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer(slow)")
with gr.Tabs(elem_id="sadtalker_genearted"):
gen_video = gr.Video(label="数字人视频", format="mp4")
submit = gr.Button('🎬 生成数字人视频', elem_id="sadtalker_generate", variant='primary')
submit.click(
fn=Talker_response_img,
inputs=[question_audio,
talker_method,
input_text,
voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method,
source_image,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style,
facerender,
exp_weight,
blink_every,
fps],
outputs=[gen_video]
)
with gr.Row():
examples = [
[
'examples/source_image/full_body_2.png', 'SadTalker',
'crop',
False,
False
],
[
'examples/source_image/full_body_1.png', 'SadTalker',
'full',
True,
False
],
[
'examples/source_image/full4.jpeg', 'SadTalker',
'crop',
False,
True
],
]
gr.Examples(examples=examples,
inputs=[
source_image, talker_method,
preprocess_type,
is_still_mode,
enhancer],
outputs=[gen_video],
# cache_examples=True,
)
return inference
def app_vits():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 语音克隆"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
(source_image, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character, talker_method, asr_method, llm_method)= webui_setting()
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('对话'):
with gr.Group():
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="输入文字/问题", lines=3)
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
with gr.Tabs():
with gr.TabItem('数字人问答'):
gen_video = gr.Video(label="数字人视频", format="mp4", autoplay=False)
video_button = gr.Button("🎬 生成数字人视频", variant='primary')
video_button.click(fn=Talker_response,inputs=[question_audio, talker_method, input_text, voice, rate, volume, pitch, am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character],outputs=[gen_video])
exmaple_setting(asr_method, input_text, character, talker_method, tts_method, voice, llm_method)
return inference
def app_talk():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) 数字人播报"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.Tab("图片人物"):
source_image = gr.Image(label='Source image', type = 'filepath')
with gr.Tab("视频人物"):
source_video = gr.Video(label="Source video")
(_, voice, rate, volume, pitch,
am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size, character, talker_method, asr_method, llm_method)= webui_setting()
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('对话'):
with gr.Group():
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="输入文字/问题", lines=3)
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
with gr.Tabs():
with gr.TabItem('SadTalker数字人参数设置'):
with gr.Accordion("Advanced Settings",
open=False):
gr.Markdown("SadTalker: need help? please visit our [[best practice page](https://github.com/OpenTalker/SadTalker/blob/main/docs/best_practice.md)] for more detials")
with gr.Column(variant='panel'):
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
with gr.Row():
pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0) #
exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1) #
blink_every = gr.Checkbox(label="use eye blink", value=True)
with gr.Row():
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model? 256 is faster") #
preprocess_type = gr.Radio(['crop', 'resize','full'], value='full', label='preprocess', info="How to handle input image?")
with gr.Row():
is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)")
facerender = gr.Radio(['facevid2vid'], value='facevid2vid', label='facerender', info="which face render?")
with gr.Row():
# batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=1)
fps = gr.Slider(label='fps in generation', step=1, maximum=30, value =20)
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer(slow)")
with gr.Tabs():
gen_video = gr.Video(label="数字人视频", format="mp4")
video_button = gr.Button('🎬 生成数字人视频', elem_id="sadtalker_generate", variant='primary')
video_button.click(fn=Talker_Say,inputs=[preprocess_type, is_still_mode, enhancer, batch_size, size_of_image,
pose_style, facerender, exp_weight, blink_every, fps,
source_image, source_video, question_audio, talker_method, input_text, voice, rate, volume, pitch, am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, character],outputs=[gen_video])
with gr.Row():
with gr.Column(variant='panel'):
gr.Markdown("## Test Examples")
gr.Examples(
examples = [
[
'examples/source_image/full_body_2.png',
'应对压力最有效的方法是什么?',
],
[
'examples/source_image/full_body_1.png',
'如何进行时间管理?',
],
[
'examples/source_image/full3.png',
'为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?',
],
],
fn = Talker_Say,
inputs = [source_image, input_text],
)
return inference
def load_musetalk_model():
gr.Warning("若显存不足,可能会导致模型加载失败,可以尝试使用其他摸型或者换其他设备尝试。")
gr.Info("MuseTalk模型导入中...")
musetalker.init_model()
gr.Info("MuseTalk模型导入成功")
return "MuseTalk模型导入成功"
def musetalk_prepare_material(source_video, bbox_shift):
if musetalker.load is False:
gr.Warning("请先加载MuseTalk模型后重新上传文件")
return source_video, None
return musetalker.prepare_material(source_video, bbox_shift)
def app_muse():
with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
gr.HTML(get_title("Linly 智能对话系统 (Linly-Talker) MuseTalker数字人实时对话"))
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
with gr.TabItem('MuseV Video'):
gr.Markdown("MuseV: need help? please visit MuseVDemo to generate Video https://huggingface.co/spaces/AnchorFake/MuseVDemo")
with gr.Row():
source_video = gr.Video(label="Reference Video",sources=['upload'])
gr.Markdown("BBox_shift 推荐值下限,在生成初始结果后生成相应的 bbox 范围。如果结果不理想,可以根据该参考值进行调整。\n一般来说,在我们的实验观察中,我们发现正值(向下半部分移动)通常会增加嘴巴的张开度,而负值(向上半部分移动)通常会减少嘴巴的张开度。然而,需要注意的是,这并不是绝对的规则,用户可能需要根据他们的具体需求和期望效果来调整该参数。")
with gr.Row():
bbox_shift = gr.Number(label="BBox_shift value, px", value=0)
bbox_shift_scale = gr.Textbox(label="bbox_shift_scale",
value="",interactive=False)
load_musetalk = gr.Button("加载MuseTalk模型(传入视频前先加载)", variant='primary')
load_musetalk.click(fn=load_musetalk_model, outputs=bbox_shift_scale)
# (_, voice, rate, volume, pitch,
# am, voc, lang, male,
# inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
# tts_method, batch_size, character, talker_method, asr_method, llm_method)= webui_setting()
with gr.Tabs("TTS Method"):
with gr.Accordion("TTS Method语音方法调节 ", open=True):
with gr.Tab("Edge-TTS"):
voice = gr.Dropdown(edgetts.SUPPORTED_VOICE,
value='zh-CN-XiaoxiaoNeural',
label="Voice 声音选择")
rate = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1.0,
label='Rate 速率')
volume = gr.Slider(minimum=0,
maximum=100,
value=100,
step=1,
label='Volume 音量')
pitch = gr.Slider(minimum=-100,
maximum=100,
value=0,
step=1,
label='Pitch 音调')
with gr.Tab("PaddleTTS"):
am = gr.Dropdown(["FastSpeech2"], label="声学模型选择", value = 'FastSpeech2')
voc = gr.Dropdown(["PWGan", "HifiGan"], label="声码器选择", value = 'PWGan')
lang = gr.Dropdown(["zh", "en", "mix", "canton"], label="语言选择", value = 'zh')
male = gr.Checkbox(label="男声(Male)", value=False)
with gr.Tab('GPT-SoVITS'):
with gr.Row():
gpt_path = gr.FileExplorer(root = GPT_SoVITS_ckpt, glob = "*.ckpt", value = "s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt", file_count='single', label="GPT模型路径")
sovits_path = gr.FileExplorer(root = GPT_SoVITS_ckpt, glob = "*.pth", value = "s2G488k.pth", file_count='single', label="SoVITS模型路径")
# gpt_path = gr.Dropdown(choices=list_models(GPT_SoVITS_ckpt, 'ckpt'))
# sovits_path = gr.Dropdown(choices=list_models(GPT_SoVITS_ckpt, 'pth'))
# gpt_path = gr.Textbox(label="GPT模型路径",
# value="GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
# sovits_path = gr.Textbox(label="SoVITS模型路径",
# value="GPT_SoVITS/pretrained_models/s2G488k.pth")
button = gr.Button("加载模型")
button.click(fn = load_vits_model,
inputs=[gpt_path, sovits_path],
outputs=[gpt_path, sovits_path])
with gr.Row():
inp_ref = gr.Audio(label="请上传3~10秒内参考音频,超过会报错!", sources=["microphone", "upload"], type="filepath")
use_mic_voice = gr.Checkbox(label="使用语音问答的麦克风")
prompt_text = gr.Textbox(label="参考音频的文本", value="")
prompt_language = gr.Dropdown(
label="参考音频的语种", choices=["中文", "英文", "日文"], value="中文"
)
asr_button = gr.Button("语音识别 - 克隆参考音频")
asr_button.click(fn=Asr,inputs=[inp_ref],outputs=[prompt_text])
with gr.Row():
text_language = gr.Dropdown(
label="需要合成的语种", choices=["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"], value="中文"
)
how_to_cut = gr.Dropdown(
label="怎么切",
choices=["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切" ],
value="凑四句一切",
interactive=True,
)
with gr.Column(variant='panel'):
batch_size = gr.Slider(minimum=1,
maximum=10,
value=2,
step=1,
label='Talker Batch size')
tts_method = gr.Radio(['Edge-TTS', 'PaddleTTS', 'GPT-SoVITS克隆声音', 'Comming Soon!!!'], label="Text To Speech Method",
value = 'Edge-TTS')
tts_method.change(fn = tts_model_change, inputs=[tts_method], outputs = [tts_method])
asr_method = gr.Radio(choices = ['Whisper-tiny', 'Whisper-base', 'FunASR', 'Comming Soon!!!'], value='Whisper-base', label = '语音识别模型选择')
asr_method.change(fn = asr_model_change, inputs=[asr_method], outputs = [asr_method])
llm_method = gr.Dropdown(choices = ['Qwen', 'Qwen2', 'Linly', 'Gemini', 'ChatGLM', 'ChatGPT', 'GPT4Free', '直接回复 Direct Reply', 'Comming Soon!!!'], value = '直接回复 Direct Reply', label = 'LLM 模型选择')
llm_method.change(fn = llm_model_change, inputs=[llm_method], outputs = [llm_method])
source_video.change(fn=musetalk_prepare_material, inputs=[source_video, bbox_shift], outputs=[source_video, bbox_shift_scale])
with gr.Column(variant='panel'):
with gr.Tabs():
with gr.TabItem('对话'):
with gr.Group():
question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
input_text = gr.Textbox(label="输入文字/问题", lines=3)
asr_text = gr.Button('语音识别(语音对话后点击)')
asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
with gr.TabItem("MuseTalk Video"):
gen_video = gr.Video(label="数字人视频", format="mp4")
submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary')
examples = [os.path.join('Musetalk/data/video', video) for video in os.listdir("Musetalk/data/video")]
# ['Musetalk/data/video/yongen_musev.mp4', 'Musetalk/data/video/musk_musev.mp4', 'Musetalk/data/video/monalisa_musev.mp4', 'Musetalk/data/video/sun_musev.mp4', 'Musetalk/data/video/seaside4_musev.mp4', 'Musetalk/data/video/sit_musev.mp4', 'Musetalk/data/video/man_musev.mp4']
gr.Markdown("## MuseV Video Examples")
gr.Examples(
examples=[
['Musetalk/data/video/yongen_musev.mp4', 5],
['Musetalk/data/video/musk_musev.mp4', 5],
['Musetalk/data/video/monalisa_musev.mp4', 5],
['Musetalk/data/video/sun_musev.mp4', 5],
['Musetalk/data/video/seaside4_musev.mp4', 5],
['Musetalk/data/video/sit_musev.mp4', 5],
['Musetalk/data/video/man_musev.mp4', 5]
],
inputs =[source_video, bbox_shift],
)
submit.click(
fn=MuseTalker_response,
inputs=[source_video, bbox_shift, question_audio, input_text, voice, rate, volume, pitch, am, voc, lang, male,
inp_ref, prompt_text, prompt_language, text_language, how_to_cut, use_mic_voice,
tts_method, batch_size],
outputs=[gen_video]
)
return inference
def asr_model_change(model_name, progress=gr.Progress(track_tqdm=True)):
global asr
# 清理显存,在加载新的模型之前释放不必要的显存
clear_memory()
if model_name == "Whisper-tiny":
try:
if os.path.exists('Whisper/tiny.pt'):
asr = WhisperASR('Whisper/tiny.pt')
else:
asr = WhisperASR('tiny')
gr.Info("Whisper-tiny模型导入成功")
except Exception as e:
gr.Warning(f"Whisper-tiny模型下载失败 {e}")
elif model_name == "Whisper-base":
try:
if os.path.exists('Whisper/base.pt'):
asr = WhisperASR('Whisper/base.pt')
else:
asr = WhisperASR('base')
gr.Info("Whisper-base模型导入成功")
except Exception as e:
gr.Warning(f"Whisper-base模型下载失败 {e}")
elif model_name == 'FunASR':
try:
from ASR import FunASR
asr = FunASR()
gr.Info("FunASR模型导入成功")
except Exception as e:
gr.Warning(f"FunASR模型下载失败 {e}")
else:
gr.Warning("未知ASR模型,可提issue和PR 或者 建议更新模型")
return model_name
def llm_model_change(model_name, progress=gr.Progress(track_tqdm=True)):
global llm
gemini_apikey = ""
openai_apikey = ""
proxy_url = None
# 清理显存,在加载新的模型之前释放不必要的显存
clear_memory()
if model_name == 'Linly':
try:
llm = llm_class.init_model('Linly', 'Linly-AI/Chinese-LLaMA-2-7B-hf', prefix_prompt=prefix_prompt)
gr.Info("Linly模型导入成功")
except Exception as e:
gr.Warning(f"Linly模型下载失败 {e}")
elif model_name == 'Qwen':
try:
llm = llm_class.init_model('Qwen', 'Qwen/Qwen-1_8B-Chat', prefix_prompt=prefix_prompt)
gr.Info("Qwen模型导入成功")
except Exception as e:
gr.Warning(f"Qwen模型下载失败 {e}")
elif model_name == 'Qwen2':
try:
llm = llm_class.init_model('Qwen2', 'Qwen/Qwen1.5-0.5B-Chat', prefix_prompt=prefix_prompt)
gr.Info("Qwen2模型导入成功")
except Exception as e:
gr.Warning(f"Qwen2模型下载失败 {e}")
elif model_name == 'Gemini':
if gemini_apikey:
llm = llm_class.init_model('Gemini', 'gemini-pro', gemini_apikey, proxy_url)
gr.Info("Gemini模型导入成功")
else:
gr.Warning("请填写Gemini的api_key")
elif model_name == 'ChatGLM':
try:
llm = llm_class.init_model('ChatGLM', 'THUDM/chatglm3-6b', prefix_prompt=prefix_prompt)
gr.Info("ChatGLM模型导入成功")
except Exception as e:
gr.Warning(f"ChatGLM模型导入失败 {e}")
elif model_name == 'ChatGPT':
if openai_apikey:
llm = llm_class.init_model('ChatGPT', api_key=openai_apikey, proxy_url=proxy_url, prefix_prompt=prefix_prompt)
else:
gr.Warning("请填写OpenAI的api_key")
elif model_name == '直接回复 Direct Reply':
llm =llm_class.init_model(model_name)
gr.Info("直接回复,不实用LLM模型")
elif model_name == 'GPT4Free':
try:
llm = llm_class.init_model('GPT4Free', prefix_prompt=prefix_prompt)
gr.Info("GPT4Free模型导入成功, 请注意GPT4Free可能不稳定")
except Exception as e:
gr.Warning(f"GPT4Free模型下载失败 {e}")
else:
gr.Warning("未知LLM模型,可提issue和PR 或者 建议更新模型")
return model_name
def talker_model_change(model_name, progress=gr.Progress(track_tqdm=True)):
global talker
# 清理显存,在加载新的模型之前释放不必要的显存
clear_memory()
if model_name not in ['SadTalker', 'Wav2Lip', 'NeRFTalk']:
gr.Warning("其他模型还未集成,请等待")
if model_name == 'SadTalker':
try:
from TFG import SadTalker
talker = SadTalker(lazy_load=True)
gr.Info("SadTalker模型导入成功")
except Exception as e:
gr.Warning("SadTalker模型加载失败", e)
elif model_name == 'Wav2Lip':
try:
from TFG import Wav2Lip
clear_memory()
talker = Wav2Lip("checkpoints/wav2lip_gan.pth")
gr.Info("Wav2Lip模型导入成功")
except Exception as e:
gr.Warning("Wav2Lip模型加载失败", e)
elif model_name == 'NeRFTalk':
try:
from TFG import ERNeRF
talker = ERNeRF()
talker.init_model('checkpoints/Obama_ave.pth', 'checkpoints/Obama.json')
gr.Info("NeRFTalk模型导入成功")
gr.Warning("NeRFTalk模型是针对单个人进行训练的,内置了奥班马Obama的模型,上传图片无效")
except Exception as e:
gr.Warning("NeRFTalk模型加载失败", e)
else:
gr.Warning("未知TFG模型,可提issue和PR 或者 建议更新模型")
return model_name
def tts_model_change(model_name, progress=gr.Progress(track_tqdm=True)):
global tts
# 清理显存,在加载新的模型之前释放不必要的显存
clear_memory()
if model_name == 'Edge-TTS':
# tts = EdgeTTS()
if edgetts.network:
gr.Info("EdgeTTS模型导入成功")
else:
gr.Warning("EdgeTTS模型加载失败,请检查网络是否正常连接,否则无法使用")
elif model_name == 'PaddleTTS':
try:
from TTS import PaddleTTS
tts = PaddleTTS()
gr.Info("PaddleTTS模型导入成功")
except Exception as e:
gr.Warning(f"PaddleTTS模型下载失败 {e}")
elif model_name == 'GPT-SoVITS克隆声音':
try:
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
vits.load_model(gpt_path, sovits_path)
gr.Info("模型加载成功")
except Exception as e:
gr.Warning(f"模型加载失败 {e}")
gr.Warning("注意注意⚠️:GPT-SoVITS要上传参考音频进行克隆,请点击TTS Method语音方法调节操作")
else:
gr.Warning("未知TTS模型,可提issue和PR 或者 建议更新模型")
return model_name
def success_print(text):
print(f"\033[1;32;40m{text}\033[0m")
def error_print(text):
print(f"\033[1;31;40m{text}\033[0m")
if __name__ == "__main__":
llm_class = LLM(mode='offline')
llm = llm_class.init_model('直接回复 Direct Reply')
success_print("默认不使用LLM模型,直接回复问题,同时减少显存占用!")
try:
from VITS import *
vits = GPT_SoVITS()
success_print("Success!!! GPT-SoVITS模块加载成功,语音克隆默认使用GPT-SoVITS模型")
# gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
# sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
# vits.load_model(gpt_path, sovits_path)
except Exception as e:
error_print(f"GPT-SoVITS Error: {e}")
error_print("如果使用VITS,请先下载GPT-SoVITS模型和安装环境")
try:
from TFG import SadTalker
talker = SadTalker(lazy_load=True)
success_print("Success!!! SadTalker模块加载成功,默认使用SadTalker模型")
except Exception as e:
error_print(f"SadTalker Error: {e}")
error_print("如果使用SadTalker,请先下载SadTalker模型")
try:
from ASR import WhisperASR
if os.path.exists('Whisper/base.pt'):
asr = WhisperASR('Whisper/base.pt')
else:
asr = WhisperASR('base')
success_print("Success!!! WhisperASR模块加载成功,默认使用Whisper-base模型")
except Exception as e:
error_print(f"ASR Error: {e}")
error_print("如果使用FunASR,请先下载WhisperASR模型和安装环境")
# 判断显存是否8g,若小于8g不建议使用MuseTalk功能
# Check if GPU is available and has at least 8GB of memory
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3) # Convert bytes to GB
if gpu_memory < 8:
error_print("警告: 您的显卡显存小于8GB,不建议使用MuseTalk功能")
try:
from TFG import MuseTalk_RealTime
musetalker = MuseTalk_RealTime()
success_print("Success!!! MuseTalk模块加载成功")
except Exception as e:
error_print(f"MuseTalk Error: {e}")
error_print("如果使用MuseTalk,请先下载MuseTalk模型")
tts = edgetts
if not tts.network:
error_print("EdgeTTS模块加载失败,请检查网络是否正常连接,否则无法使用")
gr.close_all()
# demo_app = app()
demo_img = app_img()
demo_multi = app_multi()
# demo_vits = app_vits()
# demo_talk = app_talk()
demo_muse = app_muse()
demo = gr.TabbedInterface(interface_list = [
# demo_app,
demo_img,
demo_multi,
# demo_vits,
# demo_talk,
demo_muse,
],
tab_names = [
"个性化角色互动",
"数字人多轮智能对话",
"MuseTalk数字人实时对话"
],
title = "Linly-Talker WebUI")
demo.queue()
demo.launch(server_name=ip, # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0"
server_port=port,
# 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话
# ssl_certfile=ssl_certfile,
# ssl_keyfile=ssl_keyfile,
# ssl_verify=False,
# share=True,
debug=True,
) |