Spaces:
Runtime error
Runtime error
liuyuan-pal
commited on
Commit
•
ab287b7
1
Parent(s):
0fa63ef
update
Browse files
app.py
CHANGED
@@ -17,12 +17,19 @@ _DESCRIPTION = '''
|
|
17 |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
|
18 |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
|
19 |
</div>
|
20 |
-
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
|
22 |
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
|
23 |
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
|
24 |
_USER_GUIDE3 = "Generated multiview images are shown below!"
|
25 |
|
|
|
26 |
|
27 |
def mask_prediction(mask_predictor, image_in: Image.Image):
|
28 |
if image_in.mode=='RGBA':
|
@@ -56,11 +63,16 @@ def generate(model, batch_view_num, sample_num, cfg_scale, seed, image_input, el
|
|
56 |
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
|
57 |
data = {"input_image": image_input, "input_elevation": elevation_input}
|
58 |
for k, v in data.items():
|
59 |
-
|
|
|
|
|
|
|
60 |
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
|
65 |
B, N, _, H, W = x_sample.shape
|
66 |
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
|
@@ -80,12 +92,15 @@ def run_demo():
|
|
80 |
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
|
81 |
config = OmegaConf.load(cfg)
|
82 |
# model = None
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
|
90 |
# init sam model
|
91 |
mask_predictor = None # sam_init(device_idx)
|
@@ -121,10 +136,12 @@ def run_demo():
|
|
121 |
examples_per_page=40
|
122 |
)
|
123 |
|
|
|
124 |
with gr.Column(scale=1):
|
125 |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
|
126 |
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
|
127 |
crop_btn = gr.Button('Crop the image', variant='primary', interactive=True)
|
|
|
128 |
|
129 |
with gr.Column(scale=1):
|
130 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
@@ -134,6 +151,7 @@ def run_demo():
|
|
134 |
# batch_view_num = gr.Slider(1, 16, 8, step=1, label='', interactive=True)
|
135 |
seed = gr.Number(6033, label='Random seed', interactive=True)
|
136 |
run_btn = gr.Button('Run Generation', variant='primary', interactive=True)
|
|
|
137 |
|
138 |
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
|
139 |
|
|
|
17 |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
|
18 |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
|
19 |
</div>
|
20 |
+
Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss
|
21 |
+
|
22 |
+
1. Upload the image.
|
23 |
+
2. Predict the mask for the foreground object.
|
24 |
+
3. Crop the foreground object.
|
25 |
+
4. Generate multiview images.
|
26 |
+
'''
|
27 |
_USER_GUIDE0 = "Step0: Please upload an image in the block above (or choose an example above). We use alpha values as object masks if given."
|
28 |
_USER_GUIDE1 = "Step1: Please select a crop size using the glider."
|
29 |
_USER_GUIDE2 = "Step2: Please choose a suitable elevation angle and then click the Generate button."
|
30 |
_USER_GUIDE3 = "Generated multiview images are shown below!"
|
31 |
|
32 |
+
deployed = True
|
33 |
|
34 |
def mask_prediction(mask_predictor, image_in: Image.Image):
|
35 |
if image_in.mode=='RGBA':
|
|
|
63 |
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
|
64 |
data = {"input_image": image_input, "input_elevation": elevation_input}
|
65 |
for k, v in data.items():
|
66 |
+
if deployed:
|
67 |
+
data[k] = v.unsqueeze(0).cuda()
|
68 |
+
else:
|
69 |
+
data[k] = v.unsqueeze(0)
|
70 |
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
|
71 |
|
72 |
+
if deployed:
|
73 |
+
x_sample = model.sample(data, cfg_scale, batch_view_num)
|
74 |
+
else:
|
75 |
+
x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
|
76 |
|
77 |
B, N, _, H, W = x_sample.shape
|
78 |
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
|
|
|
92 |
ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
|
93 |
config = OmegaConf.load(cfg)
|
94 |
# model = None
|
95 |
+
if deployed:
|
96 |
+
model = instantiate_from_config(config.model)
|
97 |
+
print(f'loading model from {ckpt} ...')
|
98 |
+
ckpt = torch.load(ckpt,map_location='cpu')
|
99 |
+
model.load_state_dict(ckpt['state_dict'], strict=True)
|
100 |
+
model = model.cuda().eval()
|
101 |
+
del ckpt
|
102 |
+
else:
|
103 |
+
model = None
|
104 |
|
105 |
# init sam model
|
106 |
mask_predictor = None # sam_init(device_idx)
|
|
|
136 |
examples_per_page=40
|
137 |
)
|
138 |
|
139 |
+
|
140 |
with gr.Column(scale=1):
|
141 |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
|
142 |
crop_size_slider = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
|
143 |
crop_btn = gr.Button('Crop the image', variant='primary', interactive=True)
|
144 |
+
fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
|
145 |
|
146 |
with gr.Column(scale=1):
|
147 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
|
|
151 |
# batch_view_num = gr.Slider(1, 16, 8, step=1, label='', interactive=True)
|
152 |
seed = gr.Number(6033, label='Random seed', interactive=True)
|
153 |
run_btn = gr.Button('Run Generation', variant='primary', interactive=True)
|
154 |
+
fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
|
155 |
|
156 |
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
|
157 |
|