Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,833 Bytes
e52682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
"""
A model worker executes the model.
"""
import os
import json
import time
import uuid
import asyncio
import requests
import argparse
import threading
from threading import Thread
from functools import partial
from typing import Iterator, List, Optional, Tuple
import uvicorn
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse
import torch
import decord
import numpy as np
from PIL import Image
from decord import VideoReader, cpu
from transformers import TextIteratorStreamer
from videollama2.constants import WORKER_HEART_BEAT_INTERVAL
from videollama2.utils import (build_logger, server_error_msg, pretty_print_semaphore)
from videollama2.model.builder import load_pretrained_model
from videollama2.mm_utils import process_images, process_videos, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria, tokenizer_MMODAL_token
from videollama2.mm_utils import chunk_list, frame_expansion
from videollama2.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_TOKEN, NUM_FRAMES, MMODAL_TOKEN_INDEX
GB = 1 << 30
worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0
model_semaphore = None
# variable_content = os.getenv('MY_VARIABLE', '')
# KEYWORDS_LIST = set(variable_content.split('\n'))
KEYWORDS_LIST = []
path = 'assets/keywords.txt'
if os.path.exists(path):
with open(path, 'r', encoding='utf-8') as file:
for line in file:
KEYWORDS_LIST.append(line.strip())
else:
KEYWORDS_LIST = []
KEYWORD_BLOCK_MESSAGE2 = "The output contains political, erotic and other unsafe content that violates local laws. Please re-enter your question."
KEYWORD_BLOCK_MESSAGE1 = "Your input question contains political, erotic and other unsafe content that violates local laws. Please re-enter your question."
STREAM_CHECK_MULTIPLE = 20
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
def safety_check(text, history=None, ) -> Optional[str]:
if len(KEYWORDS_LIST) > 0 and any(x in text.lower() for x in KEYWORDS_LIST):
print('############')
return KEYWORD_BLOCK_MESSAGE2
return None
def input_safety_check(text) -> Optional[str]:
if len(KEYWORDS_LIST) > 0 and any(x in text.lower() for x in KEYWORDS_LIST):
print('######## Input keyword alarm triggered:', text)
return KEYWORD_BLOCK_MESSAGE1
return None
class ModelWorker:
def __init__(self, controller_addr, worker_addr,
worker_id, no_register,
model_path, model_base, model_name,
load_8bit, load_4bit, device):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
self.model_path = model_path
if model_path.endswith("/"):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
self.model_name = model_paths[-2] + "_" + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
self.device = device
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
self.is_multimodal = 'videollama2' in self.model_name.lower() or 'vlb' in self.model_name.lower()
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,))
self.heart_beat_thread.start()
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status()
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}")
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(url, json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length()}, timeout=5)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if model_semaphore is None:
return 0
else:
return args.limit_model_concurrency - model_semaphore._value + (len(
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
def get_status(self):
return {
"model_names": [self.model_name],
"speed": 1,
"queue_length": self.get_queue_length(),
}
@torch.inference_mode()
def generate_stream(self, params):
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
prompt = params["prompt"]
ori_prompt = prompt
images_or_videos = params.get("images", None)
#print("Input images:", images_or_videos)
num_image_tokens = 0
modal_list = []
if images_or_videos is not None and len(images_or_videos) and self.is_multimodal:
if len(images_or_videos) > 0:
if len(images_or_videos) != prompt.count(DEFAULT_IMAGE_TOKEN) and len(images_or_videos) != (prompt.count(DEFAULT_VIDEO_TOKEN)):
raise ValueError("Number of images/videos does not match number of <image>/<video> tokens in prompt")
try:
print("Load image...")
images_or_videos = [load_image_from_base64(image) for image in images_or_videos]
images_or_videos = process_images(images_or_videos, image_processor, model.config)
modal_list = ["image"]
replace_token = DEFAULT_IMAGE_TOKEN
modal_token_index = MMODAL_TOKEN_INDEX["IMAGE"]
except:
print("Load video instead...")
decord_vr = VideoReader(uri=images_or_videos[0], ctx=cpu(0))
duration = len(decord_vr)
if not "use_taug" in self.model_path:
frame_id_list = np.linspace(0, duration-1, 8, dtype=int)
video_frames = decord_vr.get_batch(frame_id_list).asnumpy()
images_or_videos = process_videos(video_frames, image_processor, model.config)
else:
print("Temporal augmentation activated!!!")
frame_id_list = np.linspace(0, duration-1, 8 * 2 * 2, dtype=int)
video_data = decord_vr.get_batch(frame_id_list)
video_frames = [Image.fromarray(f) for f in video_data.asnumpy()]
chunked_video_frames = chunk_list(video_frames, 2*2)
expanded_video_frames = [frame_expansion(frame_list, 2) for frame_list in chunked_video_frames]
images_or_videos = process_videos(expanded_video_frames, image_processor, model.config)
# frame_id_list = np.linspace(0, duration-1, NUM_FRAMES, dtype=int)
# images_or_videos = decord_vr.get_batch(frame_id_list).asnumpy()
# images_or_videos = process_videos(images_or_videos, image_processor, model.config)
#print("images_or_videos.shape:", images_or_videos.shape)
modal_list = ["video"]
replace_token = DEFAULT_VIDEO_TOKEN
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"]
if type(images_or_videos) is list:
images_or_videos = [image.to(self.model.device, dtype=torch.float16) for image in images_or_videos]
else:
images_or_videos = images_or_videos.to(self.model.device, dtype=torch.float16)
if modal_list[0] == "video":
print("Video:", images_or_videos.shape)
images_or_videos = [images_or_videos]
else:
print("Image:", images_or_videos.shape)
#image_sizes = [image.size for image in images_or_videos]
# if len(images_or_videos) % NUM_FRAMES == 0:
# images_or_videos = process_images(images_or_videos, image_processor, model.config)
# #images_or_videos = [image.to(self.model.device, dtype=torch.float16) for image in images_or_videos]
# #modal_list = ["image"] * len(images_or_videos)
# images_or_videos = images_or_videos.to(self.model.device, dtype=torch.float16)
# modal_list = ["video"]
# replace_token = DEFAULT_VIDEO_TOKEN
# else:
if getattr(self.model.config, 'mm_use_im_start_end', False):
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
else:
images = None
modal_list = []
image_args = {"images_or_videos": images_or_videos, "modal_list": modal_list}
else:
images = None
image_args = {}
print("image_args:", image_args)
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
stop_str = params.get("stop", None)
do_sample = True if temperature > 0.001 else False
#input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
# tokenizer for our video-llama beta
input_ids = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt').unsqueeze(0).to(self.device)
#print("Current prompt:", prompt)
#print("input_ids.shape:", input_ids.shape)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
stopping_criteria=[stopping_criteria],
use_cache=True,
**image_args
))
thread.start()
generated_text = ori_prompt
token_count = 0
for new_text in streamer:
generated_text += new_text
token_count += len(tokenizer.encode(new_text))
if token_count >= STREAM_CHECK_MULTIPLE:
safety_message = safety_check(generated_text)
if safety_message:
print('####### Keyword alarm triggered:', generated_text)
yield json.dumps({"text": safety_message , "error_code": 1}).encode() + b"\0"
return
token_count = 0 #
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
def generate_stream_gate(self, params):
try:
input_text = params.get("prompt", "")
safety_message = input_safety_check(input_text)
if safety_message:
yield json.dumps({"text": safety_message, "error_code": 1}).encode() + b"\0"
return
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
app = FastAPI()
def release_model_semaphore(fn=None):
model_semaphore.release()
if fn is not None:
fn()
@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
global model_semaphore, global_counter
global_counter += 1
params = await request.json()
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
await model_semaphore.acquire()
worker.send_heart_beat()
generator = worker.generate_stream_gate(params)
background_tasks = BackgroundTasks()
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_get_status")
async def get_status(request: Request):
return worker.get_status()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
parser.add_argument("--controller-address", type=str, default="http://localhost:21001")
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--model-name", type=str)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=1)
parser.add_argument("--no-register", action="store_true")
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
if args.multi_modal:
logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
worker = ModelWorker(args.controller_address,
args.worker_address,
worker_id,
args.no_register,
args.model_path,
args.model_base,
args.model_name,
args.load_8bit,
args.load_4bit,
args.device)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|