VideoLLaMA2-AV / app.py
lixin4ever's picture
first commit (#1)
e52682b verified
raw
history blame
14.6 kB
import spaces
import os
import re
import torch
import gradio as gr
import sys
sys.path.append('./videollama2')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://s2.loli.net/2024/06/03/D3NeXHWy5az9tmT.png" alt="VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯" style="max-width: 120px; height: auto;">
</a>
<div>
<h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
<h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or πŸ’– on this space.</h5>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2"><img src='https://img.shields.io/badge/Github-VideoLLaMA2-9C276A'></a>
<a href="https://arxiv.org/pdf/2406.07476.pdf"><img src="https://img.shields.io/badge/Arxiv-2406.07476-AD1C18"></a>
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA2.svg?style=social"></a>
</div>
</div>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
color: #9C276A
}
"""
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
This project is released under the Apache 2.0 license as found in the LICENSE file. The service is a research preview intended for non-commercial use ONLY, subject to the model Licenses of LLaMA and Mistral, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please get in touch with us if you find any potential violations.
""")
plum_color = gr.themes.colors.Color(
name='plum',
c50='#F8E4EF',
c100='#E9D0DE',
c200='#DABCCD',
c300='#CBA8BC',
c400='#BC94AB',
c500='#AD809A',
c600='#9E6C89',
c700='#8F5878',
c800='#804467',
c900='#713056',
c950='#662647',
)
class Chat:
def __init__(self, model_path, load_8bit=False, load_4bit=False):
disable_torch_init()
self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
# TODO: support multiple turns of conversation.
assert len(data) == 1
tensor, modal = data[0]
response = mm_infer(tensor, message, self.model, self.tokenizer, modal=modal.strip('<>'),
do_sample=True if temperature > 0.0 else False,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_output_tokens)
return response
@spaces.GPU(duration=120)
def generate(image, video, audio, message, chatbot, va_tag, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
data = []
processor = handler.processor
try:
if image is not None:
data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
elif video is not None:
video_audio = processor['video'](video, va=va_tag=="Audio Vision")
if va_tag=="Audio Vision":
for k,v in video_audio.items():
video_audio[k] = v.to(handler.model.device, dtype=dtype)
else:
video_audio = video_audio.to(handler.model.device, dtype=dtype)
data.append((video_audio, '<video>'))
elif audio is not None:
data.append((processor['audio'](audio).to(handler.model.device, dtype=dtype), '<audio>'))
elif image is None and video is None:
data.append((None, '<text>'))
else:
raise NotImplementedError("Not support image and video at the same time")
except Exception as e:
traceback.print_exc()
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
show_images = ""
if image is not None:
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
if video is not None:
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
if audio is not None:
show_images += f'<audio controls style="display: inline-block;" src="./file={audio}"></audio>'
one_turn_chat = [textbox_in, None]
# 1. first run case
if len(chatbot) == 0:
one_turn_chat[0] += "\n" + show_images
# 2. not first run case
else:
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
previous_audio = re.findall(r'<audio controls style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
if len(previous_image) > 0:
previous_image = previous_image[0]
# 2.1 new image append or pure text input will start a new conversation
if image is not None and os.path.basename(previous_image) != os.path.basename(image):
message.clear()
one_turn_chat[0] += "\n" + show_images
elif len(previous_video) > 0:
previous_video = previous_video[0]
# 2.2 new video append or pure text input will start a new conversation
if video is not None and os.path.basename(previous_video) != os.path.basename(video):
message.clear()
one_turn_chat[0] += "\n" + show_images
elif len(previous_audio) > 0:
previous_audio = previous_audio[0]
# 2.3 new audio append or pure text input will start a new conversation
if audio is not None and os.path.basename(previous_audio) != os.path.basename(video):
message.clear()
one_turn_chat[0] += "\n" + show_images
message.append({'role': 'user', 'content': textbox_in})
if va_tag == "Vision Only":
audio_tower = handler.model.model.audio_tower
handler.model.model.audio_tower = None
elif va_tag == "Audio Only":
vision_tower = handler.model.model.vision_tower
handler.model.model.vision_tower = None
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
if va_tag == "Vision Only":
handler.model.model.audio_tower = audio_tower
elif va_tag == "Audio Only":
handler.model.model.vision_tower = vision_tower
message.append({'role': 'assistant', 'content': text_en_out})
one_turn_chat[1] = text_en_out
chatbot.append(one_turn_chat)
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), gr.update(value=audio, interactive=True), message, chatbot
def regenerate(message, chatbot):
message.pop(-1), message.pop(-1)
chatbot.pop(-1)
return message, chatbot
def clear_history(message, chatbot):
message.clear(), chatbot.clear()
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
message, chatbot,
gr.update(value=None, interactive=True))
# BUG of Zero Environment
# 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
# 3. The function can't return tensor or other cuda objects.
model_path = 'DAMO-NLP-SG/VideoLLaMA2.1-7B-AV'
handler = Chat(model_path, load_8bit=False, load_4bit=False)
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
theme = gr.themes.Default(primary_hue=plum_color)
# theme.update_color("primary", plum_color.c500)
theme.set(slider_color="#9C276A")
theme.set(block_title_text_color="#9C276A")
theme.set(block_label_text_color="#9C276A")
theme.set(button_primary_text_color="#9C276A")
# theme.set(button_secondary_text_color="*neutral_800")
with gr.Blocks(title='VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯', theme=theme, css=block_css) as demo:
gr.Markdown(title_markdown)
message = gr.State([])
with gr.Row():
with gr.Column(scale=3):
image = gr.Image(label="Input Image", type="filepath")
video = gr.Video(label="Input Video")
audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Accordion("Parameters", open=True) as parameter_row:
# num_beams = gr.Slider(
# minimum=1,
# maximum=10,
# value=1,
# step=1,
# interactive=True,
# label="beam search numbers",
# )
va_tag = gr.Radio(choices=["Audio Vision", "Vision Only", "Audio Only"], value="Audio Vision", label="Select one")
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=64,
maximum=1024,
value=512,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="VideoLLaMA 2", bubble_full_width=True, height=750)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=True)
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=True)
# flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=True)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear history", interactive=True)
with gr.Row():
cur_dir = os.path.dirname(os.path.abspath(__file__))
with gr.Column():
gr.Examples(
examples=[
[
f"{cur_dir}/examples/extreme_ironing.jpg",
"What happens in this image?",
],
[
f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?",
],
],
inputs=[image, textbox],
)
with gr.Column():
gr.Examples(
examples=[
[
f"{cur_dir}/examples/WBS4I.mp4",
"Please describe the video:",
],
[
f"{cur_dir}/examples/sample_demo_1.mp4",
"Please describe the video:",
],
],
inputs=[video, textbox],
)
with gr.Column():
gr.Examples(
examples=[
[
f"{cur_dir}/examples/00000368.mp4",
"Where is the loudest instrument?",
],
[
f"{cur_dir}/examples/00003491.mp4",
"Is the instrument on the left louder than the instrument on the right?",
],
],
inputs=[video, textbox],
)
with gr.Column():
# audio
gr.Examples(
examples=[
[
f"{cur_dir}/examples/Y--ZHUMfueO0.flac",
"Please describe the audio:",
],
[
f"{cur_dir}/examples/Traffic and pedestrians.wav",
"Please describe the audio:",
],
],
inputs=[audio, textbox],
)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
submit_btn.click(
generate,
[image, video, audio, message, chatbot, va_tag, textbox, temperature, top_p, max_output_tokens],
[image, video, audio, message, chatbot])
regenerate_btn.click(
regenerate,
[message, chatbot],
[message, chatbot]).then(
generate,
[image, video, audio, message, chatbot, va_tag, textbox, temperature, top_p, max_output_tokens],
[image, video, audio, message, chatbot])
clear_btn.click(
clear_history,
[message, chatbot],
[image, video, audio, message, chatbot, textbox])
demo.launch(share=False)