Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
title = "Ask Rick a Question" | |
description = """ | |
<center> | |
The bot was trained to answer questions based on Rick and Morty dialogues. Ask Rick anything! | |
<img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px> | |
</center> | |
""" | |
article = "Check out [the original Rick and Morty Bot](https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot) that this demo is based off of." | |
tokenizer = AutoTokenizer.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2") | |
model = AutoModelForCausalLM.from_pretrained("ericzhou/DialoGPT-Medium-Rick_v2") | |
def predict(input): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') | |
# generate a response | |
history = model.generate(new_user_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() | |
# convert the tokens to text, and then split the responses into the right format | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
return response[1] | |
gr.Interface(fn = predict, inputs = ["textbox"], outputs = ["text"], title = title, description = description, article = article).launch() | |