File size: 14,371 Bytes
8aa4f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

import json, os, sys
import os.path as osp
from typing import List, Union, Tuple, Dict
from pathlib import Path
import cv2
import numpy as np
from imageio import imread, imwrite
import pickle
import pycocotools.mask as maskUtils
from einops import rearrange
from tqdm import tqdm
from PIL import Image
import io
import requests
import traceback
import base64
import time


NP_BOOL_TYPES = (np.bool_, np.bool8)
NP_FLOAT_TYPES = (np.float_, np.float16, np.float32, np.float64)
NP_INT_TYPES = (np.int_, np.int8, np.int16, np.int32, np.int64, np.uint, np.uint8, np.uint16, np.uint32, np.uint64)

class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        elif isinstance(obj, np.ScalarType):
            if isinstance(obj, NP_BOOL_TYPES):
                return bool(obj)
            elif isinstance(obj, NP_FLOAT_TYPES):
                return float(obj)
            elif isinstance(obj, NP_INT_TYPES):
                return int(obj)
        return json.JSONEncoder.default(self, obj)


def json2dict(json_path: str):
    with open(json_path, 'r', encoding='utf8') as f:
        metadata = json.loads(f.read())
    return metadata


def dict2json(adict: dict, json_path: str):
    with open(json_path, "w", encoding="utf-8") as f:
        f.write(json.dumps(adict, ensure_ascii=False, cls=NumpyEncoder))


def dict2pickle(dumped_path: str, tgt_dict: dict):
    with open(dumped_path, "wb") as f:
        pickle.dump(tgt_dict, f, protocol=pickle.HIGHEST_PROTOCOL)


def pickle2dict(pkl_path: str) -> Dict:
    with open(pkl_path, "rb") as f:
        dumped_data = pickle.load(f)
    return dumped_data

def get_all_dirs(root_p: str) -> List[str]: 
    alldir = os.listdir(root_p)
    dirlist = []
    for dirp in alldir:
        dirp = osp.join(root_p, dirp)
        if osp.isdir(dirp):
            dirlist.append(dirp)
    return dirlist


def read_filelist(filelistp: str):
    with open(filelistp, 'r', encoding='utf8') as f:
        lines = f.readlines()
    if len(lines) > 0 and lines[-1].strip() == '':
        lines = lines[:-1]
    return lines


VIDEO_EXTS = {'.flv', '.mp4', '.mkv', '.ts', '.mov', 'mpeg'}
def get_all_videos(video_dir: str, video_exts=VIDEO_EXTS, abs_path=False) -> List[str]:
    filelist = os.listdir(video_dir)
    vlist = []
    for f in filelist:
        if Path(f).suffix in video_exts:
            if abs_path:
                vlist.append(osp.join(video_dir, f))
            else:
                vlist.append(f)
    return vlist


IMG_EXT = {'.bmp', '.jpg', '.png', '.jpeg'}
def find_all_imgs(img_dir, abs_path=False):
    imglist = []
    dir_list = os.listdir(img_dir)
    for filename in dir_list:
        file_suffix = Path(filename).suffix
        if file_suffix.lower() not in IMG_EXT:
            continue
        if abs_path:
            imglist.append(osp.join(img_dir, filename))
        else:
            imglist.append(filename)
    return imglist


def find_all_files_recursive(tgt_dir: Union[List, str], ext, exclude_dirs={}):
    if isinstance(tgt_dir, str):
        tgt_dir = [tgt_dir]

    filelst = []
    for d in tgt_dir:
        for root, _, files in os.walk(d):
            if osp.basename(root) in exclude_dirs:
                continue
            for f in files:
                if Path(f).suffix.lower() in ext:
                    filelst.append(osp.join(root, f))
    
    return filelst


def danbooruid2relpath(id_str: str, file_ext='.jpg'):
    if not isinstance(id_str, str):
        id_str = str(id_str)
    return id_str[-3:].zfill(4) + '/' + id_str  + file_ext


def get_template_histvq(template: np.ndarray) -> Tuple[List[np.ndarray]]:
    len_shape = len(template.shape)
    num_c = 3
    mask = None
    if len_shape == 2:
        num_c = 1
    elif len_shape == 3 and template.shape[-1] == 4:
        mask = np.where(template[..., -1])
        template = template[..., :num_c][mask]

    values, quantiles = [], []
    for ii in range(num_c):
        v, c = np.unique(template[..., ii].ravel(), return_counts=True)
        q = np.cumsum(c).astype(np.float64)
        if len(q) < 1:
            return None, None
        q /= q[-1]
        values.append(v)
        quantiles.append(q)
    return values, quantiles


def inplace_hist_matching(img: np.ndarray, tv: List[np.ndarray], tq: List[np.ndarray]) -> None:
    len_shape = len(img.shape)
    num_c = 3
    mask = None

    tgtimg = img
    if len_shape == 2:
        num_c = 1
    elif len_shape == 3 and img.shape[-1] == 4:
        mask = np.where(img[..., -1])
        tgtimg = img[..., :num_c][mask]

    im_h, im_w = img.shape[:2]
    oldtype = img.dtype
    for ii in range(num_c):
        _, bin_idx, s_counts = np.unique(tgtimg[..., ii].ravel(), return_inverse=True,
                                                return_counts=True)
        s_quantiles = np.cumsum(s_counts).astype(np.float64)
        if len(s_quantiles) == 0:
            return
        s_quantiles /= s_quantiles[-1]
        interp_t_values = np.interp(s_quantiles, tq[ii], tv[ii]).astype(oldtype)
        if mask is not None:
            img[..., ii][mask] = interp_t_values[bin_idx]
        else:
            img[..., ii] = interp_t_values[bin_idx].reshape((im_h, im_w))
            # try:
            #     img[..., ii] = interp_t_values[bin_idx].reshape((im_h, im_w))
            # except:
            #     LOGGER.error('##################### sth goes wrong')
            #     cv2.imshow('img', img)
            #     cv2.waitKey(0)


def fgbg_hist_matching(fg_list: List, bg: np.ndarray, min_tq_num=128):
    btv, btq = get_template_histvq(bg)
    ftv, ftq = get_template_histvq(fg_list[0]['image'])
    num_fg = len(fg_list)
    idx_matched = -1
    if num_fg > 1:
        _ftv, _ftq = get_template_histvq(fg_list[0]['image'])
        if _ftq is not None and ftq is not None:
            if len(_ftq[0]) > len(ftq[0]):
                idx_matched = num_fg - 1
                ftv, ftq = _ftv, _ftq
            else:
                idx_matched = 0

    if btq is not None and ftq is not None:
        if len(btq[0]) > len(ftq[0]):
            tv, tq = btv, btq
            idx_matched = -1
        else:
            tv, tq = ftv, ftq
            if len(tq[0]) > min_tq_num:
                inplace_hist_matching(bg, tv, tq)
        
        if len(tq[0]) > min_tq_num:
            for ii, fg_dict in enumerate(fg_list):
                fg = fg_dict['image']
                if ii != idx_matched and len(tq[0]) > min_tq_num:
                    inplace_hist_matching(fg, tv, tq)


def imread_nogrey_rgb(imp: str) -> np.ndarray:
    img: np.ndarray = imread(imp)
    c = 1
    if len(img.shape) == 3:
        c = img.shape[-1]
    if c == 1:
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
    if c == 4:
        img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
    return img


def square_pad_resize(img: np.ndarray, tgt_size: int, pad_value: Tuple = (114, 114, 114)):
    h, w = img.shape[:2]
    pad_h, pad_w = 0, 0
    
    # make square image
    if w < h:
        pad_w = h - w
        w += pad_w
    elif h < w:
        pad_h = w - h
        h += pad_h

    pad_size = tgt_size - h
    if pad_size > 0:
        pad_h += pad_size
        pad_w += pad_size

    if pad_h > 0 or pad_w > 0:    
        img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=pad_value)

    down_scale_ratio = tgt_size / img.shape[0]
    assert down_scale_ratio <= 1
    if down_scale_ratio < 1:
        img = cv2.resize(img, (tgt_size, tgt_size), interpolation=cv2.INTER_AREA)

    return img, down_scale_ratio, pad_h, pad_w


def scaledown_maxsize(img: np.ndarray, max_size: int, divisior: int = None):
    
    im_h, im_w = img.shape[:2]
    ori_h, ori_w = img.shape[:2]
    resize_ratio = max_size / max(im_h, im_w)
    if resize_ratio < 1:
        if im_h > im_w:
            im_h = max_size
            im_w = max(1, int(round(im_w * resize_ratio)))
        
        else:
            im_w = max_size
            im_h = max(1, int(round(im_h * resize_ratio)))
    if divisior is not None:
        im_w = int(np.ceil(im_w / divisior) * divisior)
        im_h = int(np.ceil(im_h / divisior) * divisior)

    if im_w != ori_w or im_h != ori_h:
       img = cv2.resize(img, (im_w, im_h), interpolation=cv2.INTER_LINEAR)
       
    return img


def resize_pad(img: np.ndarray, tgt_size: int, pad_value: Tuple = (0, 0, 0)):
    # downscale to tgt_size and pad to square
    img = scaledown_maxsize(img, tgt_size)
    padl, padr, padt, padb = 0, 0, 0, 0
    h, w = img.shape[:2]
    # padt = (tgt_size - h) // 2
    # padb = tgt_size - h - padt
    # padl = (tgt_size - w) // 2
    # padr = tgt_size - w - padl
    padb = tgt_size - h
    padr = tgt_size - w

    if padt + padb + padl + padr > 0:
        img = cv2.copyMakeBorder(img, padt, padb, padl, padr, cv2.BORDER_CONSTANT, value=pad_value)

    return img, (padt, padb, padl, padr)


def resize_pad2divisior(img: np.ndarray, tgt_size: int, divisior: int = 64, pad_value: Tuple = (0, 0, 0)):
    img = scaledown_maxsize(img, tgt_size)
    img, (pad_h, pad_w) = pad2divisior(img, divisior, pad_value)
    return img, (pad_h, pad_w)


def img2grey(img: Union[np.ndarray, str], is_rgb: bool = False) -> np.ndarray:
    if isinstance(img, np.ndarray):
        if len(img.shape) == 3:
            if img.shape[-1] != 1:
                if is_rgb:
                    img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
                else:
                    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            else:
                img = img[..., 0]
        return img
    elif isinstance(img, str):
        return cv2.imread(img, cv2.IMREAD_GRAYSCALE)
    else:
        raise NotImplementedError
    

def pad2divisior(img: np.ndarray, divisior: int, value = (0, 0, 0)) -> np.ndarray:
    im_h, im_w = img.shape[:2]
    pad_h = int(np.ceil(im_h / divisior)) * divisior - im_h
    pad_w = int(np.ceil(im_w / divisior)) * divisior - im_w
    if pad_h != 0 or pad_w != 0:
        img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, value=value, borderType=cv2.BORDER_CONSTANT)
    return img, (pad_h, pad_w)


def mask2rle(mask: np.ndarray, decode_for_json: bool = True) -> Dict:
    mask_rle = maskUtils.encode(np.array(
                        mask[..., np.newaxis] > 0, order='F',
                        dtype='uint8'))[0]
    if decode_for_json:
        mask_rle['counts'] = mask_rle['counts'].decode()
    return mask_rle


def bbox2xyxy(box) -> Tuple[int]:
    x1, y1 = box[0], box[1]
    return x1, y1, x1+box[2], y1+box[3]


def bbox_overlap_area(abox, boxb) -> int:
    ax1, ay1, ax2, ay2 = bbox2xyxy(abox)
    bx1, by1, bx2, by2 = bbox2xyxy(boxb)
    
    ix = min(ax2, bx2) - max(ax1, bx1)
    iy = min(ay2, by2) - max(ay1, by1)
    
    if ix > 0 and iy > 0:
        return ix * iy
    else:
        return 0


def bbox_overlap_xy(abox, boxb) -> Tuple[int]:
    ax1, ay1, ax2, ay2 = bbox2xyxy(abox)
    bx1, by1, bx2, by2 = bbox2xyxy(boxb)
    
    ix = min(ax2, bx2) - max(ax1, bx1)
    iy = min(ay2, by2) - max(ay1, by1)
    
    return ix, iy


def xyxy_overlap_area(axyxy, bxyxy) -> int:
    ax1, ay1, ax2, ay2 = axyxy
    bx1, by1, bx2, by2 = bxyxy
    
    ix = min(ax2, bx2) - max(ax1, bx1)
    iy = min(ay2, by2) - max(ay1, by1)
    
    if ix > 0 and iy > 0:
        return ix * iy
    else:
        return 0


DIRNAME2TAG = {'rezero': 're:zero'}
def dirname2charactername(dirname, start=6):
    cname = dirname[start:]
    for k, v in DIRNAME2TAG.items():
        cname = cname.replace(k, v)
    return cname


def imglist2grid(imglist: np.ndarray, grid_size: int = 384, col=None) -> np.ndarray:
    sqimlist = []
    for img in imglist:
        sqimlist.append(square_pad_resize(img, grid_size)[0])

    nimg = len(imglist)
    if nimg == 0:
        return None
    padn = 0
    if col is None:
        if nimg > 5:
            row = int(np.round(np.sqrt(nimg)))
            col = int(np.ceil(nimg / row))
        else:
            col = nimg

    padn = int(np.ceil(nimg / col) * col) - nimg
    if padn != 0:
        padimg = np.zeros_like(sqimlist[0])
        for _ in range(padn):
            sqimlist.append(padimg)
    
    return rearrange(sqimlist, '(row col) h w c -> (row h) (col w) c', col=col)

def write_jsonlines(filep: str, dict_lst: List[str], progress_bar: bool = True):
    with open(filep, 'w') as out:
        if progress_bar:
            lst = tqdm(dict_lst)
        else:
            lst = dict_lst
        for ddict in lst:
            jout = json.dumps(ddict) + '\n'
            out.write(jout)

def read_jsonlines(filep: str):
    with open(filep, 'r', encoding='utf8') as f:
        result = [json.loads(jline) for jline in f.read().splitlines()]
    return result


def _b64encode(x: bytes) -> str:
    return base64.b64encode(x).decode("utf-8")


def img2b64(img):
    """
    Convert a PIL image to a base64-encoded string.
    """
    if isinstance(img, np.ndarray):
        img = Image.fromarray(img)
    buffered = io.BytesIO()
    img.save(buffered, format='PNG')
    return _b64encode(buffered.getvalue())


def save_encoded_image(b64_image: str, output_path: str):
    with open(output_path, "wb") as image_file:
        image_file.write(base64.b64decode(b64_image))

def submit_request(url, data, exist_on_exception=True, auth=None, wait_time = 30):
    response = None
    try:
        while True:
            try:
                response = requests.post(url, data=data, auth=auth)
                response.raise_for_status()
                break
            except Exception as e:
                if wait_time > 0:
                    print(traceback.format_exc(), file=sys.stderr)
                    print(f'sleep {wait_time} sec...')
                    time.sleep(wait_time)
                    continue
                else:
                    raise e
    except Exception as e:
        print(traceback.format_exc(), file=sys.stderr)
        if response is not None:
            print('response content: ' + response.text)
        if exist_on_exception:
            exit()
    return response


# def resize_image(input_image, resolution):
#     H, W = input_image.shape[:2]
#     k = float(min(resolution)) / min(H, W)
#     img = cv2.resize(input_image, resolution, interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
#     return img