Spaces:
Running
Running
File size: 14,371 Bytes
8aa4f1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import json, os, sys
import os.path as osp
from typing import List, Union, Tuple, Dict
from pathlib import Path
import cv2
import numpy as np
from imageio import imread, imwrite
import pickle
import pycocotools.mask as maskUtils
from einops import rearrange
from tqdm import tqdm
from PIL import Image
import io
import requests
import traceback
import base64
import time
NP_BOOL_TYPES = (np.bool_, np.bool8)
NP_FLOAT_TYPES = (np.float_, np.float16, np.float32, np.float64)
NP_INT_TYPES = (np.int_, np.int8, np.int16, np.int32, np.int64, np.uint, np.uint8, np.uint16, np.uint32, np.uint64)
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.ScalarType):
if isinstance(obj, NP_BOOL_TYPES):
return bool(obj)
elif isinstance(obj, NP_FLOAT_TYPES):
return float(obj)
elif isinstance(obj, NP_INT_TYPES):
return int(obj)
return json.JSONEncoder.default(self, obj)
def json2dict(json_path: str):
with open(json_path, 'r', encoding='utf8') as f:
metadata = json.loads(f.read())
return metadata
def dict2json(adict: dict, json_path: str):
with open(json_path, "w", encoding="utf-8") as f:
f.write(json.dumps(adict, ensure_ascii=False, cls=NumpyEncoder))
def dict2pickle(dumped_path: str, tgt_dict: dict):
with open(dumped_path, "wb") as f:
pickle.dump(tgt_dict, f, protocol=pickle.HIGHEST_PROTOCOL)
def pickle2dict(pkl_path: str) -> Dict:
with open(pkl_path, "rb") as f:
dumped_data = pickle.load(f)
return dumped_data
def get_all_dirs(root_p: str) -> List[str]:
alldir = os.listdir(root_p)
dirlist = []
for dirp in alldir:
dirp = osp.join(root_p, dirp)
if osp.isdir(dirp):
dirlist.append(dirp)
return dirlist
def read_filelist(filelistp: str):
with open(filelistp, 'r', encoding='utf8') as f:
lines = f.readlines()
if len(lines) > 0 and lines[-1].strip() == '':
lines = lines[:-1]
return lines
VIDEO_EXTS = {'.flv', '.mp4', '.mkv', '.ts', '.mov', 'mpeg'}
def get_all_videos(video_dir: str, video_exts=VIDEO_EXTS, abs_path=False) -> List[str]:
filelist = os.listdir(video_dir)
vlist = []
for f in filelist:
if Path(f).suffix in video_exts:
if abs_path:
vlist.append(osp.join(video_dir, f))
else:
vlist.append(f)
return vlist
IMG_EXT = {'.bmp', '.jpg', '.png', '.jpeg'}
def find_all_imgs(img_dir, abs_path=False):
imglist = []
dir_list = os.listdir(img_dir)
for filename in dir_list:
file_suffix = Path(filename).suffix
if file_suffix.lower() not in IMG_EXT:
continue
if abs_path:
imglist.append(osp.join(img_dir, filename))
else:
imglist.append(filename)
return imglist
def find_all_files_recursive(tgt_dir: Union[List, str], ext, exclude_dirs={}):
if isinstance(tgt_dir, str):
tgt_dir = [tgt_dir]
filelst = []
for d in tgt_dir:
for root, _, files in os.walk(d):
if osp.basename(root) in exclude_dirs:
continue
for f in files:
if Path(f).suffix.lower() in ext:
filelst.append(osp.join(root, f))
return filelst
def danbooruid2relpath(id_str: str, file_ext='.jpg'):
if not isinstance(id_str, str):
id_str = str(id_str)
return id_str[-3:].zfill(4) + '/' + id_str + file_ext
def get_template_histvq(template: np.ndarray) -> Tuple[List[np.ndarray]]:
len_shape = len(template.shape)
num_c = 3
mask = None
if len_shape == 2:
num_c = 1
elif len_shape == 3 and template.shape[-1] == 4:
mask = np.where(template[..., -1])
template = template[..., :num_c][mask]
values, quantiles = [], []
for ii in range(num_c):
v, c = np.unique(template[..., ii].ravel(), return_counts=True)
q = np.cumsum(c).astype(np.float64)
if len(q) < 1:
return None, None
q /= q[-1]
values.append(v)
quantiles.append(q)
return values, quantiles
def inplace_hist_matching(img: np.ndarray, tv: List[np.ndarray], tq: List[np.ndarray]) -> None:
len_shape = len(img.shape)
num_c = 3
mask = None
tgtimg = img
if len_shape == 2:
num_c = 1
elif len_shape == 3 and img.shape[-1] == 4:
mask = np.where(img[..., -1])
tgtimg = img[..., :num_c][mask]
im_h, im_w = img.shape[:2]
oldtype = img.dtype
for ii in range(num_c):
_, bin_idx, s_counts = np.unique(tgtimg[..., ii].ravel(), return_inverse=True,
return_counts=True)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
if len(s_quantiles) == 0:
return
s_quantiles /= s_quantiles[-1]
interp_t_values = np.interp(s_quantiles, tq[ii], tv[ii]).astype(oldtype)
if mask is not None:
img[..., ii][mask] = interp_t_values[bin_idx]
else:
img[..., ii] = interp_t_values[bin_idx].reshape((im_h, im_w))
# try:
# img[..., ii] = interp_t_values[bin_idx].reshape((im_h, im_w))
# except:
# LOGGER.error('##################### sth goes wrong')
# cv2.imshow('img', img)
# cv2.waitKey(0)
def fgbg_hist_matching(fg_list: List, bg: np.ndarray, min_tq_num=128):
btv, btq = get_template_histvq(bg)
ftv, ftq = get_template_histvq(fg_list[0]['image'])
num_fg = len(fg_list)
idx_matched = -1
if num_fg > 1:
_ftv, _ftq = get_template_histvq(fg_list[0]['image'])
if _ftq is not None and ftq is not None:
if len(_ftq[0]) > len(ftq[0]):
idx_matched = num_fg - 1
ftv, ftq = _ftv, _ftq
else:
idx_matched = 0
if btq is not None and ftq is not None:
if len(btq[0]) > len(ftq[0]):
tv, tq = btv, btq
idx_matched = -1
else:
tv, tq = ftv, ftq
if len(tq[0]) > min_tq_num:
inplace_hist_matching(bg, tv, tq)
if len(tq[0]) > min_tq_num:
for ii, fg_dict in enumerate(fg_list):
fg = fg_dict['image']
if ii != idx_matched and len(tq[0]) > min_tq_num:
inplace_hist_matching(fg, tv, tq)
def imread_nogrey_rgb(imp: str) -> np.ndarray:
img: np.ndarray = imread(imp)
c = 1
if len(img.shape) == 3:
c = img.shape[-1]
if c == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
if c == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
return img
def square_pad_resize(img: np.ndarray, tgt_size: int, pad_value: Tuple = (114, 114, 114)):
h, w = img.shape[:2]
pad_h, pad_w = 0, 0
# make square image
if w < h:
pad_w = h - w
w += pad_w
elif h < w:
pad_h = w - h
h += pad_h
pad_size = tgt_size - h
if pad_size > 0:
pad_h += pad_size
pad_w += pad_size
if pad_h > 0 or pad_w > 0:
img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=pad_value)
down_scale_ratio = tgt_size / img.shape[0]
assert down_scale_ratio <= 1
if down_scale_ratio < 1:
img = cv2.resize(img, (tgt_size, tgt_size), interpolation=cv2.INTER_AREA)
return img, down_scale_ratio, pad_h, pad_w
def scaledown_maxsize(img: np.ndarray, max_size: int, divisior: int = None):
im_h, im_w = img.shape[:2]
ori_h, ori_w = img.shape[:2]
resize_ratio = max_size / max(im_h, im_w)
if resize_ratio < 1:
if im_h > im_w:
im_h = max_size
im_w = max(1, int(round(im_w * resize_ratio)))
else:
im_w = max_size
im_h = max(1, int(round(im_h * resize_ratio)))
if divisior is not None:
im_w = int(np.ceil(im_w / divisior) * divisior)
im_h = int(np.ceil(im_h / divisior) * divisior)
if im_w != ori_w or im_h != ori_h:
img = cv2.resize(img, (im_w, im_h), interpolation=cv2.INTER_LINEAR)
return img
def resize_pad(img: np.ndarray, tgt_size: int, pad_value: Tuple = (0, 0, 0)):
# downscale to tgt_size and pad to square
img = scaledown_maxsize(img, tgt_size)
padl, padr, padt, padb = 0, 0, 0, 0
h, w = img.shape[:2]
# padt = (tgt_size - h) // 2
# padb = tgt_size - h - padt
# padl = (tgt_size - w) // 2
# padr = tgt_size - w - padl
padb = tgt_size - h
padr = tgt_size - w
if padt + padb + padl + padr > 0:
img = cv2.copyMakeBorder(img, padt, padb, padl, padr, cv2.BORDER_CONSTANT, value=pad_value)
return img, (padt, padb, padl, padr)
def resize_pad2divisior(img: np.ndarray, tgt_size: int, divisior: int = 64, pad_value: Tuple = (0, 0, 0)):
img = scaledown_maxsize(img, tgt_size)
img, (pad_h, pad_w) = pad2divisior(img, divisior, pad_value)
return img, (pad_h, pad_w)
def img2grey(img: Union[np.ndarray, str], is_rgb: bool = False) -> np.ndarray:
if isinstance(img, np.ndarray):
if len(img.shape) == 3:
if img.shape[-1] != 1:
if is_rgb:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
img = img[..., 0]
return img
elif isinstance(img, str):
return cv2.imread(img, cv2.IMREAD_GRAYSCALE)
else:
raise NotImplementedError
def pad2divisior(img: np.ndarray, divisior: int, value = (0, 0, 0)) -> np.ndarray:
im_h, im_w = img.shape[:2]
pad_h = int(np.ceil(im_h / divisior)) * divisior - im_h
pad_w = int(np.ceil(im_w / divisior)) * divisior - im_w
if pad_h != 0 or pad_w != 0:
img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, value=value, borderType=cv2.BORDER_CONSTANT)
return img, (pad_h, pad_w)
def mask2rle(mask: np.ndarray, decode_for_json: bool = True) -> Dict:
mask_rle = maskUtils.encode(np.array(
mask[..., np.newaxis] > 0, order='F',
dtype='uint8'))[0]
if decode_for_json:
mask_rle['counts'] = mask_rle['counts'].decode()
return mask_rle
def bbox2xyxy(box) -> Tuple[int]:
x1, y1 = box[0], box[1]
return x1, y1, x1+box[2], y1+box[3]
def bbox_overlap_area(abox, boxb) -> int:
ax1, ay1, ax2, ay2 = bbox2xyxy(abox)
bx1, by1, bx2, by2 = bbox2xyxy(boxb)
ix = min(ax2, bx2) - max(ax1, bx1)
iy = min(ay2, by2) - max(ay1, by1)
if ix > 0 and iy > 0:
return ix * iy
else:
return 0
def bbox_overlap_xy(abox, boxb) -> Tuple[int]:
ax1, ay1, ax2, ay2 = bbox2xyxy(abox)
bx1, by1, bx2, by2 = bbox2xyxy(boxb)
ix = min(ax2, bx2) - max(ax1, bx1)
iy = min(ay2, by2) - max(ay1, by1)
return ix, iy
def xyxy_overlap_area(axyxy, bxyxy) -> int:
ax1, ay1, ax2, ay2 = axyxy
bx1, by1, bx2, by2 = bxyxy
ix = min(ax2, bx2) - max(ax1, bx1)
iy = min(ay2, by2) - max(ay1, by1)
if ix > 0 and iy > 0:
return ix * iy
else:
return 0
DIRNAME2TAG = {'rezero': 're:zero'}
def dirname2charactername(dirname, start=6):
cname = dirname[start:]
for k, v in DIRNAME2TAG.items():
cname = cname.replace(k, v)
return cname
def imglist2grid(imglist: np.ndarray, grid_size: int = 384, col=None) -> np.ndarray:
sqimlist = []
for img in imglist:
sqimlist.append(square_pad_resize(img, grid_size)[0])
nimg = len(imglist)
if nimg == 0:
return None
padn = 0
if col is None:
if nimg > 5:
row = int(np.round(np.sqrt(nimg)))
col = int(np.ceil(nimg / row))
else:
col = nimg
padn = int(np.ceil(nimg / col) * col) - nimg
if padn != 0:
padimg = np.zeros_like(sqimlist[0])
for _ in range(padn):
sqimlist.append(padimg)
return rearrange(sqimlist, '(row col) h w c -> (row h) (col w) c', col=col)
def write_jsonlines(filep: str, dict_lst: List[str], progress_bar: bool = True):
with open(filep, 'w') as out:
if progress_bar:
lst = tqdm(dict_lst)
else:
lst = dict_lst
for ddict in lst:
jout = json.dumps(ddict) + '\n'
out.write(jout)
def read_jsonlines(filep: str):
with open(filep, 'r', encoding='utf8') as f:
result = [json.loads(jline) for jline in f.read().splitlines()]
return result
def _b64encode(x: bytes) -> str:
return base64.b64encode(x).decode("utf-8")
def img2b64(img):
"""
Convert a PIL image to a base64-encoded string.
"""
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
buffered = io.BytesIO()
img.save(buffered, format='PNG')
return _b64encode(buffered.getvalue())
def save_encoded_image(b64_image: str, output_path: str):
with open(output_path, "wb") as image_file:
image_file.write(base64.b64decode(b64_image))
def submit_request(url, data, exist_on_exception=True, auth=None, wait_time = 30):
response = None
try:
while True:
try:
response = requests.post(url, data=data, auth=auth)
response.raise_for_status()
break
except Exception as e:
if wait_time > 0:
print(traceback.format_exc(), file=sys.stderr)
print(f'sleep {wait_time} sec...')
time.sleep(wait_time)
continue
else:
raise e
except Exception as e:
print(traceback.format_exc(), file=sys.stderr)
if response is not None:
print('response content: ' + response.text)
if exist_on_exception:
exit()
return response
# def resize_image(input_image, resolution):
# H, W = input_image.shape[:2]
# k = float(min(resolution)) / min(H, W)
# img = cv2.resize(input_image, resolution, interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
# return img
|