import json, os, sys import os.path as osp from typing import List, Union, Tuple, Dict from pathlib import Path import cv2 import numpy as np from imageio import imread, imwrite import pickle import pycocotools.mask as maskUtils from einops import rearrange from tqdm import tqdm from PIL import Image import io import requests import traceback import base64 import time NP_BOOL_TYPES = (np.bool_, np.bool8) NP_FLOAT_TYPES = (np.float_, np.float16, np.float32, np.float64) NP_INT_TYPES = (np.int_, np.int8, np.int16, np.int32, np.int64, np.uint, np.uint8, np.uint16, np.uint32, np.uint64) class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, np.ScalarType): if isinstance(obj, NP_BOOL_TYPES): return bool(obj) elif isinstance(obj, NP_FLOAT_TYPES): return float(obj) elif isinstance(obj, NP_INT_TYPES): return int(obj) return json.JSONEncoder.default(self, obj) def json2dict(json_path: str): with open(json_path, 'r', encoding='utf8') as f: metadata = json.loads(f.read()) return metadata def dict2json(adict: dict, json_path: str): with open(json_path, "w", encoding="utf-8") as f: f.write(json.dumps(adict, ensure_ascii=False, cls=NumpyEncoder)) def dict2pickle(dumped_path: str, tgt_dict: dict): with open(dumped_path, "wb") as f: pickle.dump(tgt_dict, f, protocol=pickle.HIGHEST_PROTOCOL) def pickle2dict(pkl_path: str) -> Dict: with open(pkl_path, "rb") as f: dumped_data = pickle.load(f) return dumped_data def get_all_dirs(root_p: str) -> List[str]: alldir = os.listdir(root_p) dirlist = [] for dirp in alldir: dirp = osp.join(root_p, dirp) if osp.isdir(dirp): dirlist.append(dirp) return dirlist def read_filelist(filelistp: str): with open(filelistp, 'r', encoding='utf8') as f: lines = f.readlines() if len(lines) > 0 and lines[-1].strip() == '': lines = lines[:-1] return lines VIDEO_EXTS = {'.flv', '.mp4', '.mkv', '.ts', '.mov', 'mpeg'} def get_all_videos(video_dir: str, video_exts=VIDEO_EXTS, abs_path=False) -> List[str]: filelist = os.listdir(video_dir) vlist = [] for f in filelist: if Path(f).suffix in video_exts: if abs_path: vlist.append(osp.join(video_dir, f)) else: vlist.append(f) return vlist IMG_EXT = {'.bmp', '.jpg', '.png', '.jpeg'} def find_all_imgs(img_dir, abs_path=False): imglist = [] dir_list = os.listdir(img_dir) for filename in dir_list: file_suffix = Path(filename).suffix if file_suffix.lower() not in IMG_EXT: continue if abs_path: imglist.append(osp.join(img_dir, filename)) else: imglist.append(filename) return imglist def find_all_files_recursive(tgt_dir: Union[List, str], ext, exclude_dirs={}): if isinstance(tgt_dir, str): tgt_dir = [tgt_dir] filelst = [] for d in tgt_dir: for root, _, files in os.walk(d): if osp.basename(root) in exclude_dirs: continue for f in files: if Path(f).suffix.lower() in ext: filelst.append(osp.join(root, f)) return filelst def danbooruid2relpath(id_str: str, file_ext='.jpg'): if not isinstance(id_str, str): id_str = str(id_str) return id_str[-3:].zfill(4) + '/' + id_str + file_ext def get_template_histvq(template: np.ndarray) -> Tuple[List[np.ndarray]]: len_shape = len(template.shape) num_c = 3 mask = None if len_shape == 2: num_c = 1 elif len_shape == 3 and template.shape[-1] == 4: mask = np.where(template[..., -1]) template = template[..., :num_c][mask] values, quantiles = [], [] for ii in range(num_c): v, c = np.unique(template[..., ii].ravel(), return_counts=True) q = np.cumsum(c).astype(np.float64) if len(q) < 1: return None, None q /= q[-1] values.append(v) quantiles.append(q) return values, quantiles def inplace_hist_matching(img: np.ndarray, tv: List[np.ndarray], tq: List[np.ndarray]) -> None: len_shape = len(img.shape) num_c = 3 mask = None tgtimg = img if len_shape == 2: num_c = 1 elif len_shape == 3 and img.shape[-1] == 4: mask = np.where(img[..., -1]) tgtimg = img[..., :num_c][mask] im_h, im_w = img.shape[:2] oldtype = img.dtype for ii in range(num_c): _, bin_idx, s_counts = np.unique(tgtimg[..., ii].ravel(), return_inverse=True, return_counts=True) s_quantiles = np.cumsum(s_counts).astype(np.float64) if len(s_quantiles) == 0: return s_quantiles /= s_quantiles[-1] interp_t_values = np.interp(s_quantiles, tq[ii], tv[ii]).astype(oldtype) if mask is not None: img[..., ii][mask] = interp_t_values[bin_idx] else: img[..., ii] = interp_t_values[bin_idx].reshape((im_h, im_w)) # try: # img[..., ii] = interp_t_values[bin_idx].reshape((im_h, im_w)) # except: # LOGGER.error('##################### sth goes wrong') # cv2.imshow('img', img) # cv2.waitKey(0) def fgbg_hist_matching(fg_list: List, bg: np.ndarray, min_tq_num=128): btv, btq = get_template_histvq(bg) ftv, ftq = get_template_histvq(fg_list[0]['image']) num_fg = len(fg_list) idx_matched = -1 if num_fg > 1: _ftv, _ftq = get_template_histvq(fg_list[0]['image']) if _ftq is not None and ftq is not None: if len(_ftq[0]) > len(ftq[0]): idx_matched = num_fg - 1 ftv, ftq = _ftv, _ftq else: idx_matched = 0 if btq is not None and ftq is not None: if len(btq[0]) > len(ftq[0]): tv, tq = btv, btq idx_matched = -1 else: tv, tq = ftv, ftq if len(tq[0]) > min_tq_num: inplace_hist_matching(bg, tv, tq) if len(tq[0]) > min_tq_num: for ii, fg_dict in enumerate(fg_list): fg = fg_dict['image'] if ii != idx_matched and len(tq[0]) > min_tq_num: inplace_hist_matching(fg, tv, tq) def imread_nogrey_rgb(imp: str) -> np.ndarray: img: np.ndarray = imread(imp) c = 1 if len(img.shape) == 3: c = img.shape[-1] if c == 1: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) if c == 4: img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB) return img def square_pad_resize(img: np.ndarray, tgt_size: int, pad_value: Tuple = (114, 114, 114)): h, w = img.shape[:2] pad_h, pad_w = 0, 0 # make square image if w < h: pad_w = h - w w += pad_w elif h < w: pad_h = w - h h += pad_h pad_size = tgt_size - h if pad_size > 0: pad_h += pad_size pad_w += pad_size if pad_h > 0 or pad_w > 0: img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, value=pad_value) down_scale_ratio = tgt_size / img.shape[0] assert down_scale_ratio <= 1 if down_scale_ratio < 1: img = cv2.resize(img, (tgt_size, tgt_size), interpolation=cv2.INTER_AREA) return img, down_scale_ratio, pad_h, pad_w def scaledown_maxsize(img: np.ndarray, max_size: int, divisior: int = None): im_h, im_w = img.shape[:2] ori_h, ori_w = img.shape[:2] resize_ratio = max_size / max(im_h, im_w) if resize_ratio < 1: if im_h > im_w: im_h = max_size im_w = max(1, int(round(im_w * resize_ratio))) else: im_w = max_size im_h = max(1, int(round(im_h * resize_ratio))) if divisior is not None: im_w = int(np.ceil(im_w / divisior) * divisior) im_h = int(np.ceil(im_h / divisior) * divisior) if im_w != ori_w or im_h != ori_h: img = cv2.resize(img, (im_w, im_h), interpolation=cv2.INTER_LINEAR) return img def resize_pad(img: np.ndarray, tgt_size: int, pad_value: Tuple = (0, 0, 0)): # downscale to tgt_size and pad to square img = scaledown_maxsize(img, tgt_size) padl, padr, padt, padb = 0, 0, 0, 0 h, w = img.shape[:2] # padt = (tgt_size - h) // 2 # padb = tgt_size - h - padt # padl = (tgt_size - w) // 2 # padr = tgt_size - w - padl padb = tgt_size - h padr = tgt_size - w if padt + padb + padl + padr > 0: img = cv2.copyMakeBorder(img, padt, padb, padl, padr, cv2.BORDER_CONSTANT, value=pad_value) return img, (padt, padb, padl, padr) def resize_pad2divisior(img: np.ndarray, tgt_size: int, divisior: int = 64, pad_value: Tuple = (0, 0, 0)): img = scaledown_maxsize(img, tgt_size) img, (pad_h, pad_w) = pad2divisior(img, divisior, pad_value) return img, (pad_h, pad_w) def img2grey(img: Union[np.ndarray, str], is_rgb: bool = False) -> np.ndarray: if isinstance(img, np.ndarray): if len(img.shape) == 3: if img.shape[-1] != 1: if is_rgb: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) else: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: img = img[..., 0] return img elif isinstance(img, str): return cv2.imread(img, cv2.IMREAD_GRAYSCALE) else: raise NotImplementedError def pad2divisior(img: np.ndarray, divisior: int, value = (0, 0, 0)) -> np.ndarray: im_h, im_w = img.shape[:2] pad_h = int(np.ceil(im_h / divisior)) * divisior - im_h pad_w = int(np.ceil(im_w / divisior)) * divisior - im_w if pad_h != 0 or pad_w != 0: img = cv2.copyMakeBorder(img, 0, pad_h, 0, pad_w, value=value, borderType=cv2.BORDER_CONSTANT) return img, (pad_h, pad_w) def mask2rle(mask: np.ndarray, decode_for_json: bool = True) -> Dict: mask_rle = maskUtils.encode(np.array( mask[..., np.newaxis] > 0, order='F', dtype='uint8'))[0] if decode_for_json: mask_rle['counts'] = mask_rle['counts'].decode() return mask_rle def bbox2xyxy(box) -> Tuple[int]: x1, y1 = box[0], box[1] return x1, y1, x1+box[2], y1+box[3] def bbox_overlap_area(abox, boxb) -> int: ax1, ay1, ax2, ay2 = bbox2xyxy(abox) bx1, by1, bx2, by2 = bbox2xyxy(boxb) ix = min(ax2, bx2) - max(ax1, bx1) iy = min(ay2, by2) - max(ay1, by1) if ix > 0 and iy > 0: return ix * iy else: return 0 def bbox_overlap_xy(abox, boxb) -> Tuple[int]: ax1, ay1, ax2, ay2 = bbox2xyxy(abox) bx1, by1, bx2, by2 = bbox2xyxy(boxb) ix = min(ax2, bx2) - max(ax1, bx1) iy = min(ay2, by2) - max(ay1, by1) return ix, iy def xyxy_overlap_area(axyxy, bxyxy) -> int: ax1, ay1, ax2, ay2 = axyxy bx1, by1, bx2, by2 = bxyxy ix = min(ax2, bx2) - max(ax1, bx1) iy = min(ay2, by2) - max(ay1, by1) if ix > 0 and iy > 0: return ix * iy else: return 0 DIRNAME2TAG = {'rezero': 're:zero'} def dirname2charactername(dirname, start=6): cname = dirname[start:] for k, v in DIRNAME2TAG.items(): cname = cname.replace(k, v) return cname def imglist2grid(imglist: np.ndarray, grid_size: int = 384, col=None) -> np.ndarray: sqimlist = [] for img in imglist: sqimlist.append(square_pad_resize(img, grid_size)[0]) nimg = len(imglist) if nimg == 0: return None padn = 0 if col is None: if nimg > 5: row = int(np.round(np.sqrt(nimg))) col = int(np.ceil(nimg / row)) else: col = nimg padn = int(np.ceil(nimg / col) * col) - nimg if padn != 0: padimg = np.zeros_like(sqimlist[0]) for _ in range(padn): sqimlist.append(padimg) return rearrange(sqimlist, '(row col) h w c -> (row h) (col w) c', col=col) def write_jsonlines(filep: str, dict_lst: List[str], progress_bar: bool = True): with open(filep, 'w') as out: if progress_bar: lst = tqdm(dict_lst) else: lst = dict_lst for ddict in lst: jout = json.dumps(ddict) + '\n' out.write(jout) def read_jsonlines(filep: str): with open(filep, 'r', encoding='utf8') as f: result = [json.loads(jline) for jline in f.read().splitlines()] return result def _b64encode(x: bytes) -> str: return base64.b64encode(x).decode("utf-8") def img2b64(img): """ Convert a PIL image to a base64-encoded string. """ if isinstance(img, np.ndarray): img = Image.fromarray(img) buffered = io.BytesIO() img.save(buffered, format='PNG') return _b64encode(buffered.getvalue()) def save_encoded_image(b64_image: str, output_path: str): with open(output_path, "wb") as image_file: image_file.write(base64.b64decode(b64_image)) def submit_request(url, data, exist_on_exception=True, auth=None, wait_time = 30): response = None try: while True: try: response = requests.post(url, data=data, auth=auth) response.raise_for_status() break except Exception as e: if wait_time > 0: print(traceback.format_exc(), file=sys.stderr) print(f'sleep {wait_time} sec...') time.sleep(wait_time) continue else: raise e except Exception as e: print(traceback.format_exc(), file=sys.stderr) if response is not None: print('response content: ' + response.text) if exist_on_exception: exit() return response # def resize_image(input_image, resolution): # H, W = input_image.shape[:2] # k = float(min(resolution)) / min(H, W) # img = cv2.resize(input_image, resolution, interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) # return img