File size: 178,238 Bytes
122057f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import inspect
import warnings
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union

import numpy as np
import tensorflow as tf
from tensorflow.compiler.tf2xla.python.xla import dynamic_update_slice

from ..modeling_tf_outputs import TFCausalLMOutputWithPast, TFSeq2SeqLMOutput
from ..models.auto import (
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
)
from ..tf_utils import shape_list, stable_softmax
from ..utils import ModelOutput, logging
from .configuration_utils import GenerationConfig
from .tf_logits_process import (
    TFForcedBOSTokenLogitsProcessor,
    TFForcedEOSTokenLogitsProcessor,
    TFForceTokensLogitsProcessor,
    TFLogitsProcessorList,
    TFMinLengthLogitsProcessor,
    TFNoBadWordsLogitsProcessor,
    TFNoRepeatNGramLogitsProcessor,
    TFRepetitionPenaltyLogitsProcessor,
    TFSuppressTokensAtBeginLogitsProcessor,
    TFSuppressTokensLogitsProcessor,
    TFTemperatureLogitsWarper,
    TFTopKLogitsWarper,
    TFTopPLogitsWarper,
)


logger = logging.get_logger(__name__)


@dataclass
class TFGreedySearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using greedy search.


    Args:
        sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
            generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFGreedySearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
            generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
        encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
            `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFSampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using sampling.


    Args:
        sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
            generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
        attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(num_return_sequences*batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFSampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of
    the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
            generated token), with each tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`.
        encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size*num_return_sequences,
            num_heads, sequence_length, sequence_length)`.
        encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
            `(batch_size*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_return_sequences, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_return_sequences, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam search.

    Args:
        sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
            beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
        beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam indices of generated token id at each generation step. `tf.Tensor` of shape
            `(batch_size*num_return_sequences, sequence_length)`.
        attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    beam_indices: Optional[tf.Tensor] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights
    of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`tf.Tensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
            beam. `Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
        beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam indices of generated token id at each generation step. `tf.Tensor` of shape
            `(batch_size*num_return_sequences, sequence_length)`.
        encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
        encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
            `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    beam_indices: Optional[tf.Tensor] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam sample.

    Args:
        sequences (`tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
            beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams*num_return_sequences, config.vocab_size)`.
        beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam indices of generated token id at each generation step. `tf.Tensor` of shape
            `(batch_size*num_return_sequences, sequence_length)`.
        attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    beam_indices: Optional[tf.Tensor] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (`tf.Tensor` of shape `(batch_size*num_beams, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        sequences_scores (`tf.Tensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Final beam scores of the generated `sequences`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this
            beam. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token),
            with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
        beam_indices (`tf.Tensor`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Beam indices of generated token id at each generation step. `tf.Tensor` of shape
            `(batch_size*num_return_sequences, sequence_length)`.
        encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
        encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
            `(batch_size*num_beams, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    beam_indices: Optional[tf.Tensor] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFContrastiveSearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using contrastive search.

    Args:
        sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
            generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFContrastiveSearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using contrastive search. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (`tf.Tensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
            if all batches finished early due to the `eos_token_id`.
        scores (`tuple(tf.Tensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. Tuple of `tf.Tensor` with up to `max_new_tokens` elements (one element for each
            generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
        encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer of the decoder) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
        encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
            `(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (`tuple(tuple(tf.Tensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            `tf.Tensor` of shape `(batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


TFGreedySearchOutput = Union[TFGreedySearchEncoderDecoderOutput, TFGreedySearchDecoderOnlyOutput]
TFSampleOutput = Union[TFSampleEncoderDecoderOutput, TFSampleDecoderOnlyOutput]
TFBeamSearchOutput = Union[TFBeamSearchEncoderDecoderOutput, TFBeamSearchDecoderOnlyOutput]
TFBeamSampleOutput = Union[TFBeamSampleEncoderDecoderOutput, TFBeamSampleDecoderOnlyOutput]
TFContrastiveSearchOutput = Union[TFContrastiveSearchEncoderDecoderOutput, TFContrastiveSearchDecoderOnlyOutput]
TFGenerateOutput = Union[
    TFGreedySearchOutput, TFSampleOutput, TFBeamSearchOutput, TFBeamSampleOutput, TFContrastiveSearchOutput
]


class TFGenerationMixin:
    """
    A class containing all of the functions supporting generation, to be used as a mixin in [`TFPreTrainedModel`].

    The class exposes [`~generation.TFGenerationMixin.generate`], which can be used for:
        - *greedy decoding* by calling [`~generation.TFGenerationMixin.greedy_search`] if `num_beams=1` and
          `do_sample=False`
        - *contrastive search* by calling [`~generation.TFGenerationMixin.contrastive_search`] if `penalty_alpha>0` and
          `top_k>1`
        - *multinomial sampling* by calling [`~generation.TFGenerationMixin.sample`] if `num_beams=1` and
          `do_sample=True`
        - *beam-search decoding* by calling [`~generation.TFGenerationMixin.beam_search`] if `num_beams>1`

    You do not need to call any of the above methods directly. Pass custom parameter values to 'generate' instead. To
    learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
    """

    _seed_generator = None

    @property
    def seed_generator(self):
        warnings.warn("`seed_generator` is deprecated and will be removed in a future version.", UserWarning)
        if self._seed_generator is None:
            self._seed_generator = tf.random.Generator.from_non_deterministic_state()
        return self._seed_generator

    supports_xla_generation = True

    def prepare_inputs_for_generation(self, *args, **kwargs):
        raise NotImplementedError(
            "A model class needs to define a `prepare_inputs_for_generation` method in order to use `generate`."
        )

    def compute_transition_scores(
        self,
        sequences: tf.Tensor,
        scores: Tuple[tf.Tensor],
        beam_indices: Optional[tf.Tensor] = None,
        normalize_logits: bool = False,
    ) -> tf.Tensor:
        """
        Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
        used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.

        Parameters:
            sequences (`tf.Tensor`):
                The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
                shorter if all batches finished early due to the `eos_token_id`.
            scores (`tuple(tf.Tensor)`):
                Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
                of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of
                `tf.Tensor` with up to `max_new_tokens` elements (one element for each generated token), with each
                tensor of shape `(batch_size*num_beams, config.vocab_size)`.
            beam_indices (`tf.Tensor`, *optional*):
                Beam indices of generated token id at each generation step. `tf.Tensor` of shape
                `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
                generate-time.
            normalize_logits (`bool`, *optional*, defaults to `False`):
                Whether to normalize the logits (which, for legacy reasons, may be unnormalized).

        Return:
            `tf.Tensor`: A `tf.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
                the transition scores (logits)

        Examples:

        ```python
        >>> from transformers import GPT2Tokenizer, TFAutoModelForCausalLM
        >>> import numpy as np

        >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
        >>> model = TFAutoModelForCausalLM.from_pretrained("gpt2")
        >>> tokenizer.pad_token_id = tokenizer.eos_token_id
        >>> inputs = tokenizer(["Today is"], return_tensors="tf")

        >>> # Example 1: Print the scores for each token generated with Greedy Search
        >>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, normalize_logits=True
        ... )
        >>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
        >>> # encoder-decoder models, like BART or T5.
        >>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
        >>> generated_tokens = outputs.sequences[:, input_length:]
        >>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
        ...     # | token | token string | logits | probability
        ...     print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
        |   262 |  the     | -1.413 | 24.33%
        |  1110 |  day     | -2.609 | 7.36%
        |   618 |  when    | -2.009 | 13.41%
        |   356 |  we      | -1.859 | 15.58%
        |   460 |  can     | -2.508 | 8.14%

        >>> # Example 2: Reconstruct the sequence scores from Beam Search
        >>> outputs = model.generate(
        ...     **inputs,
        ...     max_new_tokens=5,
        ...     num_beams=4,
        ...     num_return_sequences=4,
        ...     return_dict_in_generate=True,
        ...     output_scores=True,
        ... )
        >>> transition_scores = model.compute_transition_scores(
        ...     outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
        ... )
        >>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
        >>> # Tip: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
        >>> # use case, you might want to recompute it with `normalize_logits=True`.
        >>> output_length = input_length + np.sum(transition_scores.numpy() < 0, axis=1)
        >>> length_penalty = model.generation_config.length_penalty
        >>> reconstructed_scores = np.sum(transition_scores, axis=1) / (output_length**length_penalty)
        >>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
        True
        ```"""
        # 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
        # to a beam search approach were the first (and only) beam is always selected
        if beam_indices is None:
            beam_indices = tf.tile(tf.expand_dims(tf.range(scores[0].shape[0]), axis=1), [1, len(scores)])

        # 2. reshape scores as [batch_size, vocab_size, # generation steps] with # generation steps being
        # seq_len - input_length
        scores = tf.transpose(tf.reshape(tf.stack(scores), (len(scores), -1)), (1, 0))
        scores = tf.reshape(scores, (-1, self.config.vocab_size, scores.shape[-1]))

        # 3. Optionally normalize the logits (across the vocab dimension)
        if normalize_logits:
            scores = tf.nn.log_softmax(scores, axis=1)

        # 4. cut beam_indices to longest beam length
        beam_indices_mask = beam_indices < 0
        max_beam_length = tf.math.reduce_max(
            tf.math.reduce_sum((1 - tf.cast(beam_indices_mask, dtype=tf.int32)), axis=-1)
        )
        beam_indices = beam_indices[:, -max_beam_length:]
        beam_indices_mask = beam_indices_mask[:, -max_beam_length:]

        # 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
        beam_indices = tf.where(beam_indices_mask, 0, beam_indices)

        # 6. Define which indices contributed to scores
        cut_idx = sequences.shape[-1] - max_beam_length
        token_indices = sequences[:, cut_idx:]
        gen_step_idx = tf.broadcast_to(tf.range(scores.shape[-1]), token_indices.shape)
        indices = tf.stack([beam_indices, token_indices, gen_step_idx], axis=-1)

        # 7. Compute scores
        transition_scores = tf.gather_nd(scores, indices)

        # 8. Mask out transition_scores of beams that stopped early
        transition_scores = tf.where(beam_indices_mask, 0, transition_scores)

        return transition_scores

    def _validate_model_class(self):
        """
        Confirms that the model class is compatible with generation. If not, raises an exception that points to the
        right class to use.
        """
        if not self.can_generate():
            generate_compatible_mappings = [
                TF_MODEL_FOR_CAUSAL_LM_MAPPING,
                TF_MODEL_FOR_VISION_2_SEQ_MAPPING,
                TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
                TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
            ]
            generate_compatible_classes = set()
            for model_mapping in generate_compatible_mappings:
                supported_models = model_mapping.get(type(self.config), default=None)
                if supported_models is not None:
                    generate_compatible_classes.add(supported_models.__name__)
            exception_message = (
                f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
                "it doesn't have a language model head."
            )
            if generate_compatible_classes:
                exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
            raise TypeError(exception_message)

    def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
        """Validates model kwargs for generation. Generate argument typos will also be caught here."""
        # Excludes arguments that are handled before calling any model function
        if self.config.is_encoder_decoder:
            for key in ["decoder_input_ids"]:
                model_kwargs.pop(key, None)

        unused_model_args = []
        model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
        # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
        # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
        if "kwargs" in model_args or "model_kwargs" in model_args:
            model_args |= set(inspect.signature(self.call).parameters)
        for key, value in model_kwargs.items():
            if value is not None and key not in model_args:
                unused_model_args.append(key)

        if unused_model_args:
            raise ValueError(
                f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
                " generate arguments will also show up in this list)"
            )

    def generate(
        self,
        inputs: Optional[tf.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        logits_processor: Optional[TFLogitsProcessorList] = None,
        seed=None,
        **kwargs,
    ) -> Union[TFGenerateOutput, tf.Tensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head.

        <Tip warning={true}>

        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
        parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`.

        For an overview of generation strategies and code examples, check out the [following
        guide](../generation_strategies).

        </Tip>

        Parameters:
            inputs (`tf.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
                should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            seed (`List[int]`, *optional*):
                Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the
                `seed` argument from stateless functions in `tf.random`.
            kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.

        Return:
            [`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when
            `config.return_dict_in_generate=True`) or a `tf.Tensor`.

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.TFGreedySearchDecoderOnlyOutput`],
                    - [`~generation.TFSampleDecoderOnlyOutput`],
                    - [`~generation.TFBeamSearchDecoderOnlyOutput`],
                    - [`~generation.TFBeamSampleDecoderOnlyOutput`]

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.TFGreedySearchEncoderDecoderOutput`],
                    - [`~generation.TFSampleEncoderDecoderOutput`],
                    - [`~generation.TFBeamSearchEncoderDecoderOutput`],
                    - [`~generation.TFBeamSampleEncoderDecoderOutput`]

        """

        # 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
        self._validate_model_class()

        # priority: `generation_config` argument > `model.generation_config` (the default generation config)
        if generation_config is None:
            # legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
            # two conditions must be met
            # 1) the generation config must have been created from the model config (`_from_model_config` field);
            # 2) the generation config must have seen no modification since its creation (the hash is the same).
            if self.generation_config._from_model_config and self.generation_config._original_object_hash == hash(
                self.generation_config
            ):
                new_generation_config = GenerationConfig.from_model_config(self.config)
                if new_generation_config != self.generation_config:
                    warnings.warn(
                        "You have modified the pretrained model configuration to control generation. This is a"
                        " deprecated strategy to control generation and will be removed soon, in a future version."
                        " Please use and modify the model generation configuration (see"
                        " https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )"
                    )
                    self.generation_config = new_generation_config
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
        generation_config.validate()
        self._validate_model_kwargs(model_kwargs.copy())

        # 2. Cast input dtypes to tf.int32 unless they're floats (which happens for some image models)
        if inputs is not None:
            if isinstance(inputs, tf.Tensor) and inputs.dtype.is_floating:
                pass
            elif isinstance(inputs, np.ndarray) and np.issubdtype(inputs.dtype, np.floating):
                pass
            else:
                inputs = tf.cast(inputs, tf.int32)
        if model_kwargs.get("attention_mask") is not None:
            model_kwargs["attention_mask"] = tf.cast(model_kwargs["attention_mask"], tf.int32)
        if "decoder_input_ids" in model_kwargs:
            if (
                isinstance(model_kwargs["decoder_input_ids"], tf.Tensor)
                and model_kwargs["decoder_input_ids"].dtype.is_floating
            ):
                pass
            elif isinstance(model_kwargs["decoder_input_ids"], np.ndarray) and np.issubdtype(
                model_kwargs["decoder_input_ids"].dtype, np.floating
            ):
                pass
            else:
                model_kwargs["decoder_input_ids"] = tf.cast(model_kwargs["decoder_input_ids"], tf.int32)

        # 3. Set generation parameters if not already defined
        logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()

        if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
            if model_kwargs.get("attention_mask") is None:
                logger.warning(
                    "The attention mask and the pad token id were not set. As a consequence, you may observe "
                    "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
                )
            eos_token_id = generation_config.eos_token_id
            if isinstance(eos_token_id, list):
                eos_token_id = eos_token_id[0]
            logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
            generation_config.pad_token_id = eos_token_id

        use_xla = not tf.executing_eagerly()
        if use_xla and not self.supports_xla_generation:
            raise ValueError(
                "The selected model does not support Graph mode nor XLA generation (e.g. from tf.function())"
            )

        # 4. Define model inputs
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
        # inputs_ids now has to be defined and cannot be None anymore
        batch_size = shape_list(inputs_tensor)[0]

        # 5. Prepare other model kwargs
        model_kwargs["output_attentions"] = generation_config.output_attentions
        model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
        model_kwargs["use_cache"] = generation_config.use_cache

        accepts_attention_mask = "attention_mask" in set(inspect.signature(self.call).parameters.keys())
        requires_attention_mask = "encoder_outputs" not in model_kwargs

        if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
                inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
            )

        # decoder-only models should use left-padding for generation
        if not self.config.is_encoder_decoder:
            if generation_config.pad_token_id is not None and tf.math.reduce_any(
                inputs_tensor[:, -1] == generation_config.pad_token_id
            ):
                logger.warning(
                    "A decoder-only architecture is being used, but right-padding was detected! For correct "
                    "generation results, please set `padding_side='left'` when initializing the tokenizer."
                )
        if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
            # if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
            model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
                inputs_tensor, model_kwargs, model_input_name
            )

        # 6. Prepare model inputs which will be used for auto-regressive generation
        if self.config.is_encoder_decoder:
            input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
                batch_size=batch_size,
                model_input_name=model_input_name,
                model_kwargs=model_kwargs,
                decoder_start_token_id=generation_config.decoder_start_token_id,
                bos_token_id=generation_config.bos_token_id,
            )
        else:
            input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")

        # 7. Prepare `max_length` depending on other stopping criteria.
        input_ids_seq_length = shape_list(input_ids)[-1]
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
        if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
            # 20 is the default max_length of the generation config
            warnings.warn(
                f"Using the model-agnostic default `max_length` (={generation_config.max_length}) "
                "to control the generation length.  recommend setting `max_new_tokens` to control the maximum length of the generation.",
                UserWarning,
            )
        elif generation_config.max_new_tokens is not None:
            if not has_default_max_length and generation_config.max_length is not None:
                logger.warning(
                    f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                    f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                    "Please refer to the documentation for more information. "
                    "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
                )
            generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length

        # If the input length is a tensor (i.e. dynamic length), skip length checks
        if not isinstance(input_ids_seq_length, tf.Tensor):
            if (
                generation_config.min_length is not None
                and generation_config.min_length > generation_config.max_length
            ):
                raise ValueError(
                    f"Unfeasable length constraints: the minimum length ({generation_config.min_length}) is larger"
                    f" than the maximum length ({generation_config.max_length})"
                )
            if input_ids_seq_length >= generation_config.max_length:
                input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
                logger.warning(
                    f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
                    f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
                    " increasing`max_new_tokens`."
                )

        # 8. determine generation mode
        is_contrastive_search_gen_mode = (
            generation_config.top_k is not None
            and generation_config.top_k > 1
            and generation_config.do_sample is False
            and generation_config.penalty_alpha is not None
            and generation_config.penalty_alpha > 0
        )
        is_greedy_gen_mode = (
            not is_contrastive_search_gen_mode
            and (generation_config.num_beams == 1)
            and generation_config.do_sample is False
        )
        is_beam_gen_mode = (
            not is_contrastive_search_gen_mode
            and (generation_config.num_beams > 1)
            and generation_config.do_sample is False
        )
        is_sample_gen_mode = (generation_config.num_beams == 1) and generation_config.do_sample is True
        is_beam_sample_gen_mode = (generation_config.num_beams > 1) and generation_config.do_sample is True

        # 9. prepare distribution pre_processing samplers
        logits_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_seq_length,
            logits_processor=logits_processor,
        )

        # 10. go into different generation modes
        if is_greedy_gen_mode:
            if generation_config.num_return_sequences > 1:
                raise ValueError(
                    f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
                    " greedy search."
                )
            # 11. run greedy search
            return self.greedy_search(
                input_ids,
                max_length=generation_config.max_length,
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                logits_processor=logits_processor,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
                **model_kwargs,
            )
        elif is_contrastive_search_gen_mode:
            if generation_config.num_return_sequences > 1:
                raise ValueError(
                    f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
                    " contrastive search."
                )
            # 11. run contrastive search
            return self.contrastive_search(
                input_ids,
                top_k=generation_config.top_k,
                penalty_alpha=generation_config.penalty_alpha,
                logits_processor=logits_processor,
                max_length=generation_config.max_length,
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
                **model_kwargs,
            )
        elif is_sample_gen_mode:
            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config=generation_config)

            # 12. expand input_ids with `num_return_sequences` additional sequences per batch
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
                expand_size=generation_config.num_return_sequences,
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

            # 13. run sample
            return self.sample(
                input_ids,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                max_length=generation_config.max_length,
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                seed=seed,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
                **model_kwargs,
            )

        elif is_beam_gen_mode:
            if generation_config.num_beams < generation_config.num_return_sequences:
                raise ValueError(
                    "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >="
                    f" num_return_sequences, got {generation_config.num_beams} and"
                    f" {generation_config.num_return_sequences} (respectivelly)"
                )

            # 11. broadcast inputs to the desired number of beams
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
                expand_size=generation_config.num_beams,
                is_encoder_decoder=self.config.is_encoder_decoder,
                expand_in_new_axis=True,
                **model_kwargs,
            )

            # 12. run beam search
            return self.beam_search(
                input_ids,
                max_length=generation_config.max_length,
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                length_penalty=generation_config.length_penalty,
                early_stopping=generation_config.early_stopping,
                logits_processor=logits_processor,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
                num_return_sequences=generation_config.num_return_sequences,
                **model_kwargs,
            )

        elif is_beam_sample_gen_mode:
            if generation_config.num_beams < generation_config.num_return_sequences:
                raise ValueError(
                    "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >="
                    f" num_return_sequences, got {generation_config.num_beams} and"
                    f" {generation_config.num_return_sequences} (respectivelly)"
                )

            # 11. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config=generation_config)

            # 12. broadcast inputs to the desired number of beams
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
                expand_size=generation_config.num_beams,
                is_encoder_decoder=self.config.is_encoder_decoder,
                expand_in_new_axis=True,
                **model_kwargs,
            )

            # 13. run beam sample (beam search with sampling)
            return self.beam_search(
                input_ids,
                do_sample=True,
                max_length=generation_config.max_length,
                pad_token_id=generation_config.pad_token_id,
                eos_token_id=generation_config.eos_token_id,
                length_penalty=generation_config.length_penalty,
                early_stopping=generation_config.early_stopping,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=generation_config.output_scores,
                return_dict_in_generate=generation_config.return_dict_in_generate,
                num_return_sequences=generation_config.num_return_sequences,
                **model_kwargs,
            )

    def _prepare_attention_mask_for_generation(
        self,
        inputs: tf.Tensor,
        pad_token_id: Optional[int],
        eos_token_id: Optional[int],
    ) -> tf.Tensor:
        is_input_ids = len(inputs.shape) == 2 and inputs.dtype in (tf.int32, tf.int64)
        is_pad_token_in_inputs = (pad_token_id is not None) and tf.math.reduce_any(inputs == pad_token_id)
        is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (pad_token_id != eos_token_id)

        # Check if input is input_ids and padded -> only then is attention_mask defined
        if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
            return tf.cast(tf.math.not_equal(inputs, pad_token_id), dtype=tf.int32)
        else:
            return tf.ones(inputs.shape[:2], dtype=tf.int32)

    def _prepare_encoder_decoder_kwargs_for_generation(
        self, inputs_tensor: tf.Tensor, model_kwargs, model_input_name: Optional[str] = None
    ) -> Dict[str, Any]:
        # 1. get encoder and store encoder outputs
        encoder = self.get_encoder()

        # 2. prepare encoder args and encoder kwargs from model kwargs
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
        encoder_signature = set(inspect.signature(encoder.call).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }

        # 3. vision models don't use `attention_mask`.
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        if model_input_name != self.main_input_name:  # in Keras, the first input must always be passed
            encoder_kwargs[self.main_input_name] = None
        encoder_outputs = encoder(**encoder_kwargs)
        model_kwargs["encoder_outputs"] = encoder_outputs

        return model_kwargs

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
        model_input_name: str,
        model_kwargs: Dict[str, tf.Tensor],
        decoder_start_token_id: int = None,
        bos_token_id: int = None,
    ) -> Tuple[tf.Tensor, Dict[str, tf.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""
        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
        else:
            decoder_input_ids = None

        # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
        decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
        decoder_input_ids_start = tf.ones((batch_size, 1), dtype=tf.int32) * decoder_start_token_id

        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
            decoder_input_ids = decoder_input_ids_start
        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
        elif tf.reduce_all(decoder_input_ids[:, 0] != decoder_start_token_id):
            decoder_input_ids = tf.concat([decoder_input_ids_start, decoder_input_ids], axis=-1)
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = tf.concat(
                    (tf.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    axis=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        return decoder_input_ids, model_kwargs

    def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
        # retrieve decoder_start_token_id for encoder-decoder models
        # fall back to bos_token_id if necessary
        decoder_start_token_id = (
            decoder_start_token_id
            if decoder_start_token_id is not None
            else self.generation_config.decoder_start_token_id
        )
        bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id

        if decoder_start_token_id is not None:
            return decoder_start_token_id
        elif bos_token_id is not None:
            return bos_token_id
        raise ValueError(
            "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
        )

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[tf.Tensor] = None,
        expand_in_new_axis: bool = False,
        **model_kwargs,
    ) -> Tuple[tf.Tensor, Dict[str, Any]]:
        """
        Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...] or [batch_size, expand_size, ...],
        depending on `expand_in_new_axis`. Beam-based approaches expect this function to be used with
        `expand_in_new_axis=True`
        """

        def _expand_tensor(tensor: tf.Tensor):
            if expand_in_new_axis:
                shape = shape_list(tensor)
                return tf.broadcast_to(tensor[:, None], (shape[0], expand_size) + tuple(shape[1:]))
            else:
                return tf.repeat(tensor, expand_size, axis=0)

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], tf.Tensor):
                    dict_to_expand[key] = _expand_tensor(dict_to_expand[key])
            return dict_to_expand

        if input_ids is not None:
            input_ids = _expand_tensor(input_ids)

        model_kwargs = _expand_dict_for_generation(model_kwargs)

        if is_encoder_decoder:
            if model_kwargs.get("encoder_outputs") is None:
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])

        return input_ids, model_kwargs

    def _prepare_model_inputs(
        self,
        inputs: Optional[tf.Tensor] = None,
        bos_token_id: Optional[int] = None,
        model_kwargs: Optional[Dict[str, tf.Tensor]] = None,
    ) -> Tuple[tf.Tensor, Optional[str], Dict[str, tf.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        # 1. retrieve all kwargs that are non-None or non-model input related.
        # some encoder-decoder models have different names for model and encoder
        if (
            self.config.is_encoder_decoder
            and hasattr(self, "encoder")
            and hasattr(self.encoder, "main_input_name")
            and self.encoder.main_input_name != self.main_input_name
        ):
            input_name = self.encoder.main_input_name
        else:
            input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}

        # 2. check whether model_input_name is passed as kwarg
        # if yes and `inputs` is None use kwarg inputs
        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

        # 3. In the presence of `inputs_embeds` for text models:
        # - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
        # doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
        # input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
        # - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
        # pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            if not self.config.is_encoder_decoder:
                has_inputs_embeds_forwarding = "inputs_embeds" in set(
                    inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
                )
                if not has_inputs_embeds_forwarding:
                    raise ValueError(
                        f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
                        "doesn't have its forwarding implemented. See the GPT2 implementation for an example "
                        "(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
                    )
                # In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
                # the attention mask) can rely on the actual model input.
                model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
                    inputs, bos_token_id, model_kwargs=model_kwargs
                )
            else:
                if inputs is not None:
                    raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"

        # 4. if `inputs` is still None, try to create `input_ids` from BOS token
        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)

        return inputs, input_name, model_kwargs

    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[tf.Tensor] = None,
        bos_token_id: Optional[int] = None,
        model_kwargs: Optional[Dict[str, tf.Tensor]] = None,
    ) -> tf.Tensor:
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

        encoder_outputs = model_kwargs.get("encoder_outputs")
        if self.config.is_encoder_decoder and encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs.last_hidden_state.shape[:-1]
            return tf.ones(shape, dtype=tf.int32) * -100

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")

        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, tf.Tensor):
                batch_size = value.shape[0]
                break
        return tf.ones((batch_size, 1), dtype=tf.int32) * bos_token_id

    @staticmethod
    def _extract_past_from_model_output(outputs: ModelOutput):
        past_key_values = None
        if "past_key_values" in outputs:
            past_key_values = outputs.past_key_values
        elif "mems" in outputs:
            past_key_values = outputs.mems
        elif "past_buckets_states" in outputs:
            past_key_values = outputs.past_buckets_states
        return past_key_values

    def _update_model_kwargs_for_generation(
        self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False
    ) -> Dict[str, Any]:
        # update past_key_values
        model_kwargs["past_key_values"] = self._extract_past_from_model_output(outputs)

        # update attention mask
        if not is_encoder_decoder:
            if "attention_mask" in model_kwargs:
                attention_mask = model_kwargs["attention_mask"]
                model_kwargs["attention_mask"] = tf.concat(
                    [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1
                )

        return model_kwargs

    def _update_model_kwargs_for_xla_generation(
        self,
        model_outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        cur_len: int,
        max_length: int,
        batch_size: int,
        is_encoder_decoder: bool = False,
        batch_axis: int = 0,
    ):
        def _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder):
            """initializes the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`"""
            if is_encoder_decoder:
                # One 1 for decoder_start_token_id, 0s for the currently-unfilled locations in the past_key_values tensor,
                # 1s for the actual input_ids
                decoder_attention_mask = tf.concat(
                    [
                        tf.ones((batch_size, 1), dtype=tf.int32),
                        tf.zeros((batch_size, num_padding_values), dtype=tf.int32),
                        tf.ones((batch_size, 1), dtype=tf.int32),
                    ],
                    axis=1,
                )
                mask = {"decoder_attention_mask": decoder_attention_mask}
            else:
                attention_mask = model_kwargs.pop("attention_mask")
                # 0s for the currently-unfilled locations in the past_key_values tensor, 1s for the actual input_ids
                attention_mask = tf.concat(
                    [
                        attention_mask,
                        tf.zeros((batch_size, num_padding_values), dtype=attention_mask.dtype),
                        tf.ones((batch_size, 1), dtype=attention_mask.dtype),
                    ],
                    axis=1,
                )
                mask = {"attention_mask": attention_mask}
            return mask

        def _update_attention(model_kwargs, new_past_index, is_encoder_decoder):
            """updates the appropriate attention mask -- encoder-decoder models use `decoder_attention_mask`"""
            update_start = tf.constant([0, 1], dtype=tf.int32) * new_past_index
            if is_encoder_decoder:
                decoder_attention_mask = model_kwargs.pop("decoder_attention_mask")
                decoder_attention_mask_update_slice = tf.ones((batch_size, 1), dtype=decoder_attention_mask.dtype)
                decoder_attention_mask = dynamic_update_slice(
                    decoder_attention_mask, decoder_attention_mask_update_slice, update_start
                )
                mask = {"decoder_attention_mask": decoder_attention_mask}
            else:
                attention_mask = model_kwargs.pop("attention_mask")
                attention_mask_update_slice = tf.ones((batch_size, 1), dtype=attention_mask.dtype)
                attention_mask = dynamic_update_slice(attention_mask, attention_mask_update_slice, update_start)
                mask = {"attention_mask": attention_mask}
            return mask

        def _initialize_past(past_key_values, num_padding_values, batch_axis):
            """initialize past_key_values with zeros -- the structure depends on `batch_axis`"""
            if batch_axis == 0:
                padding_values = tf.constant([[0, 0], [0, 0], [0, num_padding_values], [0, 0]], dtype=tf.int32)
                new_past = ()
                for past_layer in past_key_values:
                    new_past_layer = list(past_layer)
                    for i in range(len(new_past_layer[:2])):
                        new_past_layer[i] = tf.pad(past_layer[i], padding_values)
                    new_past += (tuple(new_past_layer),)
            else:
                padding_values = tf.scatter_nd(indices=[[3, 1]], updates=[num_padding_values], shape=(5, 2))
                new_past = list(past_key_values)
                for i in range(len(past_key_values)):
                    new_past[i] = tf.pad(past_key_values[i], padding_values)
            return new_past

        def _update_past(past_key_values, new_past_index, batch_axis):
            if batch_axis == 0:
                slice_start_base = tf.constant([0, 0, 1, 0])
                new_past = ()
                for past_layer in past_key_values:
                    new_past_layer = list(past_layer)
                    for i in range(len(new_past_layer[:2])):
                        update_slice = past_layer[i][:, :, -1:]
                        # Write the last slice to the first open location in the padded past_key_values array
                        # and then truncate the last slice off the array
                        new_past_layer[i] = dynamic_update_slice(
                            past_layer[i][:, :, :-1], update_slice, slice_start_base * new_past_index
                        )
                    new_past += (tuple(new_past_layer),)
            else:
                slice_start_base = tf.constant([0, 0, 0, 1, 0])
                new_past = [None for _ in range(len(past_key_values))]
                for i in range(len(past_key_values)):
                    update_slice = past_key_values[i][:, :, :, -1:]
                    # Write the last slice to the first open location in the padded past_key_values array
                    # and then truncate the last slice off the array
                    new_past[i] = dynamic_update_slice(
                        past_key_values[i][:, :, :, :-1], update_slice, slice_start_base * new_past_index
                    )
            return new_past

        past_key_values = self._extract_past_from_model_output(model_outputs)
        if past_key_values is None:
            raise ValueError(
                "No known `past_key_values variable` found in model outputs (model outputs keys:"
                f" {list(model_outputs.keys())})"
            )
        is_past_initialized = model_kwargs.pop("past_key_values", None) is not None

        if not is_past_initialized:
            # The padded version of `past_key_values` has a length of `max_length - 1`, as `past_key_values` holds information relative to
            # previous autoregressive generation steps (step 0 has no past_key_values, step 1 has 1 past_key_values value, ..., the last step
            # has `max_length - 1` past_key_values values).
            num_padding_values = max_length - cur_len - 1
            mask = _initialize_attention(model_kwargs, num_padding_values, is_encoder_decoder)
            new_past = _initialize_past(past_key_values, num_padding_values, batch_axis)
        else:
            # The new index of past_key_values to be filled corresponds to the current length of the sequence, with two
            # subtractions: -1 because past_key_values holds information regarding previous generation steps (read comment above)
            # and -1 again because in an array the index is the length of the array minus 1.
            new_past_index = cur_len - 2
            mask = _update_attention(model_kwargs, new_past_index, is_encoder_decoder)
            new_past = _update_past(past_key_values, new_past_index, batch_axis)

        # sets the updated variables (mask and past_key_values)
        model_kwargs.update(mask)
        model_kwargs["past_key_values"] = tuple(new_past)

        return model_kwargs

    def _get_logits_warper(
        self,
        generation_config: GenerationConfig,
    ) -> TFLogitsProcessorList:
        """
        This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsWarper`]
        instances used for multinomial sampling.
        """

        # instantiate warpers list
        warpers = TFLogitsProcessorList()

        # In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
        # better score (i.e. keep len(generation_config.eos_token_id) + 1)
        if generation_config.num_beams > 1:
            if isinstance(generation_config.eos_token_id, list):
                min_tokens_to_keep = len(generation_config.eos_token_id) + 1
            else:
                min_tokens_to_keep = 2
        else:
            min_tokens_to_keep = 1

        if generation_config.temperature is not None and generation_config.temperature != 1.0:
            warpers.append(TFTemperatureLogitsWarper(generation_config.temperature))
        if generation_config.top_k is not None and generation_config.top_k != 0:
            warpers.append(TFTopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep))
        if generation_config.top_p is not None and generation_config.top_p < 1.0:
            warpers.append(TFTopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep))
        return warpers

    def _get_logits_processor(
        self,
        generation_config: GenerationConfig,
        input_ids_seq_length: int,
        logits_processor: Optional[TFLogitsProcessorList],
    ) -> TFLogitsProcessorList:
        """
        This class returns a [`TFLogitsProcessorList`] list object that contains all relevant [`TFLogitsProcessor`]
        instances used to modify the scores of the language model head.
        """
        processors = TFLogitsProcessorList()

        # instantiate processors list
        if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
            processors.append(TFRepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
        if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
            processors.append(TFNoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
        if generation_config.bad_words_ids is not None:
            processors.append(
                TFNoBadWordsLogitsProcessor(generation_config.bad_words_ids, generation_config.eos_token_id)
            )
        if (
            generation_config.min_length is not None
            and generation_config.eos_token_id is not None
            and generation_config.min_length > 0
        ):
            processors.append(TFMinLengthLogitsProcessor(generation_config.min_length, generation_config.eos_token_id))
        if generation_config.forced_bos_token_id is not None:
            processors.append(TFForcedBOSTokenLogitsProcessor(generation_config.forced_bos_token_id))
        if generation_config.forced_eos_token_id is not None:
            processors.append(
                TFForcedEOSTokenLogitsProcessor(generation_config.max_length, generation_config.forced_eos_token_id)
            )
        if generation_config.suppress_tokens is not None:
            processors.append(TFSuppressTokensLogitsProcessor(generation_config.suppress_tokens))
        if generation_config.begin_suppress_tokens is not None:
            begin_index = input_ids_seq_length
            begin_index = (
                begin_index
                if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
                else begin_index + 1
            )
            if generation_config.forced_decoder_ids is not None:
                begin_index += generation_config.forced_decoder_ids[-1][
                    0
                ]  # generation starts after the last token that is forced
            processors.append(
                TFSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
            )
        if generation_config.forced_decoder_ids is not None:
            processors.append(TFForceTokensLogitsProcessor(generation_config.forced_decoder_ids))

        processors = self._merge_criteria_processor_list(processors, logits_processor)
        return processors

    def _merge_criteria_processor_list(
        self,
        default_list: TFLogitsProcessorList,
        custom_list: TFLogitsProcessorList,
    ) -> TFLogitsProcessorList:
        if len(custom_list) == 0:
            return default_list
        for default in default_list:
            for custom in custom_list:
                if type(custom) is type(default):
                    object_type = "logits processor"
                    raise ValueError(
                        f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
                        f" `generate`, but it has already been created with the values {default}. {default} has been"
                        " created by passing the corresponding arguments to generate or by the model's config default"
                        f" values. If you just want to change the default values of {object_type} consider passing"
                        f" them as arguments to `generate` instead of using a custom {object_type}."
                    )
        default_list.extend(custom_list)
        return default_list

    def greedy_search(
        self,
        input_ids: tf.Tensor,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        logits_processor: Optional[TFLogitsProcessorList] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        **model_kwargs,
    ) -> Union[TFGreedySearchOutput, tf.Tensor]:
        r"""
        Generates sequences for models with a language modeling head using greedy decoding.

        Parameters:
            input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`TFLogitsProcessorList`, *optional*):
                An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `call` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.TFGreedySearchDecoderOnlyOutput`], [`~generation.TFGreedySearchEncoderDecoderOutput`] or
            `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a
            [`~generation.TFGreedySearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.TFGreedySearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     TFAutoModelForCausalLM,
        ...     TFLogitsProcessorList,
        ...     TFMinLengthLogitsProcessor,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = TFAutoModelForCausalLM.from_pretrained("gpt2")

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id

        >>> input_prompt = "Today is a beautiful day, and"
        >>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = TFLogitsProcessorList(
        ...     [
        ...         TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
        ...     ]
        ... )

        >>> outputs = model.greedy_search(input_ids, logits_processor=logits_processor)
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ["Today is a beautiful day, and I'm so happy to be here. I'm so happy to"]
        ```"""

        # 1. init greedy_search values
        logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()

        max_length = max_length if max_length is not None else self.generation_config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )
        use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache)
        use_xla = not tf.executing_eagerly()
        # TODO (Joao): fix cache format or find programatic way to detect cache index
        # GPT2 and other models has a slightly different cache structure, with a different batch axis
        model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
        cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0
        # some models, like XLNet, need more than the last token in the presence of past_key_values
        needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys())

        # 2. init `attentions`, `hidden_states`, and `scores` tuples
        scores = [] if (return_dict_in_generate and output_scores) else None
        decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
        cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None

        # 3. init tensors to use for "xla-compileable" generate function
        batch_size, cur_len = shape_list(input_ids)

        # initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences`
        input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0)
        generated = tf.concat([input_ids, input_ids_padding], axis=-1)
        finished_sequences = tf.zeros((batch_size,), dtype=tf.bool)

        # 4. define "xla-compile-able" stop-condition and auto-regressive function
        # define condition fn
        def greedy_search_cond_fn(generated, finished_sequences, cur_len, model_kwargs):
            """state termination condition fn."""
            return ~tf.reduce_all(finished_sequences)

        # define condition fn
        def greedy_search_body_fn(generated, finished_sequences, cur_len, model_kwargs):
            """state update fn."""
            if model_kwargs.get("past_key_values") is None or needs_full_input:
                input_ids = generated[:, :cur_len]
            else:
                input_ids = tf.expand_dims(generated[:, cur_len - 1], -1)
            model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs)
            # forward pass to get next token logits
            model_outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            next_token_logits = model_outputs.logits[:, -1]

            # pre-process distribution
            next_tokens_scores = logits_processor(generated, next_token_logits, cur_len)

            # Store scores, attentions and hidden_states when required
            if not use_xla and return_dict_in_generate:
                if output_scores:
                    scores.append(next_tokens_scores)
                if output_attentions and self.config.is_encoder_decoder:
                    decoder_attentions.append(model_outputs.decoder_attentions)
                elif output_attentions and not self.config.is_encoder_decoder:
                    decoder_attentions.append(model_outputs.attentions)
                    if self.config.is_encoder_decoder:
                        cross_attentions.append(model_outputs.cross_attentions)

                if output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(model_outputs.decoder_hidden_states)
                elif output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(model_outputs.hidden_states)

            # argmax
            next_tokens = tf.argmax(next_tokens_scores, axis=-1, output_type=tf.int32)

            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32)
                next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq)
                next_token_is_eos = tf.math.reduce_any(
                    tf.equal(
                        tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1)
                    ),
                    axis=0,
                )
                finished_sequences = finished_sequences | next_token_is_eos

            # update `generated` and `cur_len`
            update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1)
            generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens)
            cur_len += 1

            # update model_kwargs
            if use_xla:
                model_kwargs = self._update_model_kwargs_for_xla_generation(
                    model_outputs=model_outputs,
                    model_kwargs=model_kwargs,
                    cur_len=cur_len,
                    max_length=max_length,
                    batch_size=batch_size,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    batch_axis=cache_batch_axis,
                )
            else:
                model_kwargs = self._update_model_kwargs_for_generation(
                    model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
                )
                # if we don't cache past_key_values key values we need the whole input
                if model_kwargs.get("past_key_values", None) is None:
                    # let's throw out `past_key_values` since we don't want `None` tensors
                    model_kwargs.pop("past_key_values", None)

            return generated, finished_sequences, cur_len, model_kwargs

        # 5. run generation
        # 1st generation step has to be run before to initialize `past_key_values`
        generated, finished_sequences, cur_len, model_kwargs = greedy_search_body_fn(
            generated, finished_sequences, cur_len, model_kwargs
        )

        # 2-to-n generation steps can then be run in autoregressive fashion
        # only in case 1st generation step does NOT yield EOS token though
        maximum_iterations = max_length - cur_len
        generated, _, cur_len, _ = tf.while_loop(
            greedy_search_cond_fn,
            greedy_search_body_fn,
            (generated, finished_sequences, cur_len, model_kwargs),
            maximum_iterations=maximum_iterations,
        )

        # 6. prepare outputs
        if not use_xla:
            # cut for backward compatibility
            generated = generated[:, :cur_len]

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                # if model is an encoder-decoder, retrieve encoder attention weights
                # and hidden states
                encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
                encoder_hidden_states = (
                    model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
                )

                scores = tuple(scores) if scores is not None else None
                decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None
                cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None
                decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None

                return TFGreedySearchEncoderDecoderOutput(
                    sequences=generated,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                return TFGreedySearchDecoderOnlyOutput(
                    sequences=generated,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return generated

    def sample(
        self,
        input_ids: tf.Tensor,
        logits_processor: Optional[TFLogitsProcessorList] = None,
        logits_warper: Optional[TFLogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        seed: Optional[Tuple[int, int]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        **model_kwargs,
    ) -> Union[TFSampleOutput, tf.Tensor]:
        r"""
        Generates sequences for models with a language modeling head using multinomial sampling.

        Parameters:
            input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            logits_processor (`TFLogitsProcessorList`, *optional*):
                An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            logits_warper (`TFLogitsProcessorList`, *optional*):
                An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`]
                used to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            seed (`List[int]`, *optional*):
                Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the
                `seed` argument from stateless functions in `tf.random`.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an
                encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.TFSampleDecoderOnlyOutput`], [`~generation.TFSampleEncoderDecoderOutput`] or `tf.Tensor`: A
            `tf.Tensor` containing the generated tokens (default behaviour) or a
            [`~generation.TFSampleDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.TFSampleEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> import tensorflow as tf
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     TFAutoModelForCausalLM,
        ...     TFLogitsProcessorList,
        ...     TFMinLengthLogitsProcessor,
        ...     TFTopKLogitsWarper,
        ...     TFTemperatureLogitsWarper,
        ... )

        >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
        >>> model = TFAutoModelForCausalLM.from_pretrained("gpt2")

        >>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
        >>> model.generation_config.pad_token_id = model.generation_config.eos_token_id

        >>> input_prompt = "Today is a beautiful day, and"
        >>> input_ids = tokenizer(input_prompt, return_tensors="tf").input_ids

        >>> # instantiate logits processors
        >>> logits_processor = TFLogitsProcessorList(
        ...     [
        ...         TFMinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
        ...     ]
        ... )
        >>> # instantiate logits processors
        >>> logits_warper = TFLogitsProcessorList(
        ...     [
        ...         TFTopKLogitsWarper(50),
        ...         TFTemperatureLogitsWarper(0.7),
        ...     ]
        ... )

        >>> tf.random.set_seed(0)
        >>> outputs = model.sample(input_ids, logits_processor=logits_processor, logits_warper=logits_warper)

        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Today is a beautiful day, and I love my country. But when I look at Donald Trump,']
        ```"""

        # 1. init greedy_search values
        logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
        logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList()

        max_length = max_length if max_length is not None else self.generation_config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )
        use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache)
        use_xla = not tf.executing_eagerly()
        # TODO (Joao): fix cache format or find programatic way to detect cache index
        # GPT2 and other models has a slightly different cache structure, with a different batch axis
        model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
        cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0
        # some models, like XLNet, need more than the last token in the presence of past_key_values
        needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys())

        # 2. init `attentions`, `hidden_states`, and `scores` tuples
        scores = [] if (return_dict_in_generate and output_scores) else None
        decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
        cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None

        # 3. init tensors to use for "xla-compileable" generate function
        batch_size, cur_len = shape_list(input_ids)

        # initialize `generated` (pre-populated with `pad_token_id`), `finished_sequences`
        input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0)
        generated = tf.concat([input_ids, input_ids_padding], axis=-1)
        finished_sequences = tf.zeros((batch_size,), dtype=tf.bool)

        # 4. define "xla-compile-able" stop-condition and auto-regressive function
        def sample_cond_fn(generated, finished_sequences, cur_len, model_kwargs):
            return ~tf.reduce_all(finished_sequences)

        def sample_body_fn(generated, finished_sequences, cur_len, model_kwargs):
            if model_kwargs.get("past_key_values") is None or needs_full_input:
                input_ids = generated[:, :cur_len]
            else:
                input_ids = tf.expand_dims(generated[:, cur_len - 1], -1)
            model_inputs = self.prepare_inputs_for_generation(input_ids, use_cache=use_cache, **model_kwargs)
            # forward pass to get next token logits
            model_outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            next_token_logits = model_outputs.logits[:, -1]

            # pre-process distribution
            next_tokens_scores = logits_processor(generated, next_token_logits, cur_len)
            next_tokens_scores = logits_warper(generated, next_tokens_scores, cur_len)

            # Store scores, attentions and hidden_states when required
            if not use_xla and return_dict_in_generate:
                if output_scores:
                    scores.append(next_tokens_scores)
                if output_attentions and self.config.is_encoder_decoder:
                    decoder_attentions.append(model_outputs.decoder_attentions)
                elif output_attentions and not self.config.is_encoder_decoder:
                    decoder_attentions.append(model_outputs.attentions)
                    if self.config.is_encoder_decoder:
                        cross_attentions.append(model_outputs.cross_attentions)

                if output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(model_outputs.decoder_hidden_states)
                elif output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(model_outputs.hidden_states)

            # sample
            if seed is not None:
                sample_seed = seed
            else:
                sample_seed = tf.experimental.numpy.random.randint(tf.int32.min, tf.int32.max, (2,), dtype=tf.int32)
            next_tokens = tf.squeeze(
                tf.random.stateless_categorical(
                    logits=next_tokens_scores, num_samples=1, seed=sample_seed, dtype=tf.int32
                ),
                axis=1,
            )

            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32)
                next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq)
                next_token_is_eos = tf.math.reduce_any(
                    tf.equal(
                        tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1)
                    ),
                    axis=0,
                )
                finished_sequences = finished_sequences | next_token_is_eos

            # update `generated` and `cur_len`
            update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1)
            generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens)
            cur_len += 1

            # update model_kwargs
            if use_xla:
                model_kwargs = self._update_model_kwargs_for_xla_generation(
                    model_outputs=model_outputs,
                    model_kwargs=model_kwargs,
                    cur_len=cur_len,
                    max_length=max_length,
                    batch_size=batch_size,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    batch_axis=cache_batch_axis,
                )
            else:
                model_kwargs = self._update_model_kwargs_for_generation(
                    model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
                )
                # if we don't cache past_key_values key values we need the whole input
                if model_kwargs.get("past_key_values", None) is None:
                    # let's throw out `past_key_values` since we don't want `None` tensors
                    model_kwargs.pop("past_key_values", None)

            return generated, finished_sequences, cur_len, model_kwargs

        # 5. run generation
        # 1st generation step has to be run before to initialize `past_key_values`
        generated, finished_sequences, cur_len, model_kwargs = sample_body_fn(
            generated, finished_sequences, cur_len, model_kwargs
        )

        # 2-to-n generation steps can then be run in autoregressive fashion
        # only in case 1st generation step does NOT yield EOS token though
        maximum_iterations = max_length - cur_len
        generated, _, cur_len, _ = tf.while_loop(
            sample_cond_fn,
            sample_body_fn,
            (generated, finished_sequences, cur_len, model_kwargs),
            maximum_iterations=maximum_iterations,
        )

        # 6. prepare outputs
        if not use_xla:
            # cut for backward compatibility
            generated = generated[:, :cur_len]

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                # if model is an encoder-decoder, retrieve encoder attention weights
                # and hidden states
                encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
                encoder_hidden_states = (
                    model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
                )

                scores = tuple(scores) if scores is not None else None
                decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None
                cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None
                decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None

                return TFSampleEncoderDecoderOutput(
                    sequences=generated,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                return TFSampleDecoderOnlyOutput(
                    sequences=generated,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return generated

    @staticmethod
    def _gather_beams(nested, beam_indices, batch_axis=0):
        """Gathers the beam slices indexed by beam_indices into new beam array."""

        def gather_fn(tensor):
            if batch_axis > 0:
                # pushes all dimentions before the batch to the end, so we get (batch, beam_id, ...)
                perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0)
                tensor = tf.transpose(tensor, perm=perm)

            gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1)
            if batch_axis > 0:
                # transposes back to the original dimensions
                perm = tf.concat((tf.range(tf.rank(tensor))[batch_axis:], tf.range(batch_axis)), axis=0)
                perm = tf.math.invert_permutation(perm)
                gathered_tensor = tf.transpose(gathered_tensor, perm=perm)

            return gathered_tensor

        return tf.nest.map_structure(gather_fn, nested)

    def beam_search(
        self,
        input_ids: tf.Tensor,
        do_sample: bool = False,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        length_penalty: Optional[float] = None,
        early_stopping: Optional[Union[bool, str]] = None,
        logits_processor: Optional[TFLogitsProcessorList] = None,
        logits_warper: Optional[TFLogitsProcessorList] = None,
        num_return_sequences: Optional[int] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        **model_kwargs,
    ) -> Union[TFBeamSearchOutput, TFBeamSampleOutput, tf.Tensor]:
        r"""
        Generates sequences for models with a language modeling head using beam search. If `do_sample` is `False`, uses
        a greedy approach, otherwise does multinomial sampling without replacement.

        Parameters:
            input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            do_sample (`bool`, *optional*, defaults to `False`):
                Whether or not to use sampling ; use greedy decoding otherwise.
            max_length (`int`, *optional*, defaults to 20):
                The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            length_penalty (`float`, *optional*, defaults to 1.0):
                Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent
                to the sequence length, which in turn is used to divide the score of the sequence. Since the score is
                the log likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences,
                while `length_penalty` < 0.0 encourages shorter sequences.
            early_stopping (`bool` or `str`, *optional*, defaults to `False`):
                Controls the stopping condition for beam-based methods, like beam-search. It accepts the following
                values: `True`, where the generation stops as soon as there are `num_beams` complete candidates;
                `False`, where an heuristic is applied and the generation stops when is it very unlikely to find better
                candidates; `"never"`, where the beam search procedure only stops when there cannot be better
                candidates (canonical beam search algorithm).
            logits_processor (`[TFLogitsProcessorList]`, *optional*):
                An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            logits_warper (`TFLogitsProcessorList`, *optional*):
                An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`]
                used to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            num_return_sequences(`int`, *optional*, defaults to 1):
                The number of independently computed returned sequences for each element in the batch.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
            model_kwargs:
                Additional model specific kwargs will be forwarded to the `call` function of the model. If model is an
                encoder-decoder model the kwargs should include `encoder_outputs`.

        Return:
            [`~generation.TFBeamSearchDecoderOnlyOutput`], [`~generation.TFBeamSearchEncoderDecoderOutput`] or
            `tf.Tensor`: A `tf.Tensor` containing the generated tokens (default behaviour) or a
            [`~generation.TFBeamSearchDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
            `return_dict_in_generate=True` or a [`~generation.TFBeamSearchEncoderDecoderOutput`] if
            `model.config.is_encoder_decoder=True`.

        Examples:

        ```python
        >>> from transformers import (
        ...     AutoTokenizer,
        ...     TFAutoModelForSeq2SeqLM,
        ...     TFLogitsProcessorList,
        ...     TFMinLengthLogitsProcessor,
        ... )
        >>> import tensorflow as tf

        >>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
        >>> model = TFAutoModelForSeq2SeqLM.from_pretrained("t5-base")

        >>> encoder_input_str = "translate English to German: How old are you?"
        >>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="tf").input_ids

        >>> # lets run beam search using 3 beams
        >>> num_beams = 3
        >>> # define decoder start token ids
        >>> input_ids = tf.ones((1, num_beams, 1), dtype=tf.int32)
        >>> input_ids = input_ids * model.generation_config.decoder_start_token_id

        >>> # add encoder_outputs to model keyword arguments
        >>> encoder_outputs = model.get_encoder()(encoder_input_ids, return_dict=True)
        >>> encoder_outputs.last_hidden_state = tf.repeat(
        ...     tf.expand_dims(encoder_outputs.last_hidden_state, axis=0), num_beams, axis=1
        ... )
        >>> model_kwargs = {"encoder_outputs": encoder_outputs}

        >>> # instantiate logits processors
        >>> logits_processor = TFLogitsProcessorList(
        ...     [TFMinLengthLogitsProcessor(5, eos_token_id=model.generation_config.eos_token_id)]
        ... )

        >>> outputs = model.beam_search(input_ids, logits_processor=logits_processor, **model_kwargs)
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['Wie alt bist du?']
        ```"""

        def flatten_beam_dim(tensor, batch_axis=0):
            """Flattens the first two dimensions of a non-scalar array."""
            shape = shape_list(tensor)
            return tf.reshape(
                tensor,
                shape[:batch_axis] + [shape[batch_axis] * shape[batch_axis + 1]] + shape[batch_axis + 2 :],
            )

        def unflatten_beam_dim(tensor, num_beams, batch_axis=0):
            """Unflattens the first, flat batch*beam dimension of a non-scalar array."""
            shape = shape_list(tensor)
            return tf.reshape(tensor, shape[:batch_axis] + [-1, num_beams] + shape[batch_axis + 1 :])

        # 1. init beam_search values
        logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
        logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList()

        max_length = max_length if max_length is not None else self.generation_config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        num_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.generation_config.num_return_sequences
        )

        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )

        length_penalty = length_penalty if length_penalty is not None else self.generation_config.length_penalty
        early_stopping = early_stopping if early_stopping is not None else self.generation_config.early_stopping

        use_cache = model_kwargs.pop("use_cache", self.generation_config.use_cache)
        use_xla = not tf.executing_eagerly()
        # TODO (Joao): fix cache format or find programatic way to detect cache index
        # GPT2 and other models has a slightly different cache structure, with a different batch axis
        model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
        cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0
        # some models, like XLNet, need more than the last token in the presence of past_key_values
        needs_full_input = "use_mems" in set(inspect.signature(self.prepare_inputs_for_generation).parameters.keys())

        # 2. init `attentions`, `hidden_states`, and `scores` tuples
        all_scores = [] if (return_dict_in_generate and output_scores) else None
        decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
        cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None

        # 3. init tensors to use for "xla-compileable" generate function
        batch_size, num_beams, cur_len = shape_list(input_ids)
        # store the prompt length of decoder
        decoder_prompt_len = cur_len

        # per batch, beam-item holding current token in loop, pre-populated with `pad_token_id`
        input_ids_padding = tf.ones((batch_size, num_beams, max_length - cur_len), dtype=tf.int32) * (
            pad_token_id or 0
        )
        running_sequences = tf.concat([input_ids, input_ids_padding], axis=-1)
        sequences = tf.ones((batch_size, num_beams, max_length), dtype=tf.int32) * (pad_token_id or 0)

        # per batch,beam-item state bit indicating if sentence has finished.
        is_sent_finished = tf.zeros((batch_size, num_beams), dtype=tf.bool)

        # per batch, beam-item score, logprobs
        running_scores = tf.tile(
            tf.expand_dims(tf.convert_to_tensor([0.0] + [-1.0e9] * (num_beams - 1)), axis=0), [batch_size, 1]
        )
        scores = tf.ones((batch_size, num_beams)) * -1.0e9

        # per batch beam indices
        running_beam_indices = tf.ones((batch_size, num_beams, max_length - decoder_prompt_len), dtype=tf.int32) * -1
        beam_indices = tf.ones((batch_size, num_beams, max_length - decoder_prompt_len), dtype=tf.int32) * -1

        # flatten beam dim
        if "encoder_outputs" in model_kwargs:
            model_kwargs["encoder_outputs"]["last_hidden_state"] = flatten_beam_dim(
                model_kwargs["encoder_outputs"]["last_hidden_state"]
            )
        if "attention_mask" in model_kwargs:
            model_kwargs["attention_mask"] = flatten_beam_dim(model_kwargs["attention_mask"])

        # 4. define "xla-compile-able" stop-condition and auto-regressive function
        # define stop-condition and auto-regressive function
        def beam_search_cond_fn(
            cur_len,
            running_sequences,
            running_scores,
            running_beam_indices,
            sequences,
            scores,
            beam_indices,
            is_sent_finished,
            decoder_prompt_len,
            model_kwargs,
        ):
            """
            Beam Search termination condition function -- halts the generation loop if any of these conditions becomes
            False
            """
            # 1. is less than max length?
            not_max_length_yet = cur_len < max_length

            # 2. can the new beams still improve?
            # early_stopping == False -> apply heuristic = always get the best score from `cur_len - decoder_prompt_len`. See the discussion
            # below for more details.
            # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
            # early_stopping == "never" -> compute the best score from max_length or cur_len, depending on the sign of
            #   length_penalty. Positive length_penalty favors longer sequences, thus we use max_length there.
            if early_stopping == "never" and length_penalty > 0.0:
                best_running_score = running_scores[:, :1] / ((max_length - decoder_prompt_len) ** length_penalty)
            else:
                best_running_score = running_scores[:, :1] / (
                    tf.cast(cur_len - decoder_prompt_len, dtype=tf.float32) ** length_penalty
                )
            worst_finished_score = tf.where(
                is_sent_finished, tf.math.reduce_min(scores, axis=1, keepdims=True), -1.0e9
            )
            improvement_still_possible = tf.math.reduce_any(best_running_score > worst_finished_score)

            # 3. is there still a beam that has not finished?
            still_open_beam = ~(tf.math.reduce_all(is_sent_finished) & (early_stopping is True))

            return not_max_length_yet & still_open_beam & improvement_still_possible

        def beam_search_body_fn(
            cur_len,
            running_sequences,
            running_scores,
            running_beam_indices,
            sequences,
            scores,
            beam_indices,
            is_sent_finished,
            decoder_prompt_len,
            model_kwargs,
        ):
            """
            Beam Search iterative update function -- each iteration adds a new token and updates the best sequences
            seen so far
            """
            # 1. Forward current tokens
            if model_kwargs.get("past_key_values") is None or needs_full_input:
                input_ids = running_sequences[:, :, :cur_len]
            else:
                input_ids = tf.expand_dims(running_sequences[:, :, cur_len - 1], -1)
            model_inputs = self.prepare_inputs_for_generation(
                flatten_beam_dim(input_ids), use_cache=use_cache, **model_kwargs
            )
            model_outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            logits = unflatten_beam_dim(model_outputs.logits[:, -1], num_beams)

            # 2. Compute log probs
            # get log probabilities from logits, process logits with processors (*e.g.* min_length, ...), and
            # add new logprobs to existing running logprobs scores.
            log_probs = tf.nn.log_softmax(logits)
            log_probs = logits_processor(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len)
            log_probs = unflatten_beam_dim(log_probs, num_beams)
            if do_sample:
                log_probs = logits_warper(flatten_beam_dim(running_sequences), flatten_beam_dim(log_probs), cur_len)
                log_probs = unflatten_beam_dim(log_probs, num_beams)
            log_probs_processed = log_probs
            log_probs = log_probs + tf.expand_dims(running_scores, axis=2)
            vocab_size = log_probs.shape[2]
            log_probs = tf.reshape(log_probs, (batch_size, num_beams * vocab_size))

            # Store scores, attentions and hidden_states when required
            if not use_xla and return_dict_in_generate:
                if output_scores:
                    all_scores.append(
                        logits_warper(
                            flatten_beam_dim(running_sequences),
                            flatten_beam_dim(log_probs_processed),
                            cur_len,
                        )
                    )
                if output_attentions and self.config.is_encoder_decoder:
                    decoder_attentions.append(model_outputs.decoder_attentions)
                elif output_attentions and not self.config.is_encoder_decoder:
                    decoder_attentions.append(model_outputs.attentions)
                    if self.config.is_encoder_decoder:
                        cross_attentions.append(model_outputs.cross_attentions)

                if output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(model_outputs.decoder_hidden_states)
                elif output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(model_outputs.hidden_states)

            # 3. Retrieve top-K
            # Each item in batch has num_beams * vocab_size candidate sequences. For each item, get the top 2*k
            # candidates with the highest log-probabilities. We gather the top 2*K beams here so that even if the
            # best K sequences reach EOS simultaneously, we have another K sequences remaining to continue the live
            # beam search.
            # Gather the top 2*K scores from _all_ beams.
            # Gather 2*k top beams.
            # Recover the beam index by floor division.
            # Recover token id by modulo division and expand Id array for broadcasting.
            # Update sequences for the 2*K top-k new sequences.
            beams_to_keep = 2 * num_beams
            if do_sample:
                topk_indices = sample_without_replacement(log_probs, beams_to_keep)
                topk_log_probs = tf.gather(log_probs, topk_indices, axis=1, batch_dims=1)
            else:
                topk_log_probs, topk_indices = tf.math.top_k(log_probs, k=beams_to_keep)
            topk_current_beam_indices = topk_indices // vocab_size
            topk_running_beam_indices = self._gather_beams(running_beam_indices, topk_current_beam_indices)
            topk_running_sequences = self._gather_beams(running_sequences, topk_current_beam_indices)
            topk_ids = topk_indices % vocab_size

            # writes the new token
            indices_batch = tf.repeat(tf.range(batch_size), [beams_to_keep])
            indices_beam = tf.tile(tf.range(beams_to_keep), [batch_size])
            update_indices = tf.stack(
                [indices_batch, indices_beam, tf.broadcast_to(cur_len, [batch_size * beams_to_keep])], axis=-1
            )
            topk_sequences = tf.tensor_scatter_nd_update(
                tensor=topk_running_sequences,
                indices=update_indices,
                updates=tf.reshape(topk_ids, [batch_size * beams_to_keep]),
            )

            # we want to store the beam indices with batch information -> real beam index = beam index % num beams
            batch_modified_indices = topk_current_beam_indices + tf.broadcast_to(
                tf.expand_dims(tf.range(batch_size) * num_beams, axis=1), topk_current_beam_indices.shape
            )
            update_indices = tf.stack(
                [
                    indices_batch,
                    indices_beam,
                    tf.broadcast_to(cur_len - decoder_prompt_len, [batch_size * beams_to_keep]),
                ],
                axis=-1,
            )
            topk_beam_indices = tf.tensor_scatter_nd_update(
                tensor=topk_running_beam_indices,
                indices=update_indices,
                updates=tf.reshape(batch_modified_indices, [batch_size * beams_to_keep]),
            )

            # 4. Check which sequences have ended
            # Update current sequences: Did the top `num_beams` sequences reach an end marker?
            # To prevent these just finished sequences from being added to the current sequences
            # set of active beam search sequences, set their log probs to a very large negative value.
            if eos_token_id is None:
                eos_in_next_token = tf.zeros(topk_sequences[:, :, cur_len].shape, dtype=tf.bool)
            else:
                eos_in_next_token = tf.math.reduce_any(
                    tf.equal(
                        tf.broadcast_to(
                            topk_sequences[:, :, cur_len],
                            [len(eos_token_id)] + topk_sequences[:, :, cur_len].shape,
                        ),
                        tf.expand_dims(tf.expand_dims(eos_token_id, -1), -1),
                    ),
                    axis=0,
                )
            did_topk_just_finished = eos_in_next_token & tf.broadcast_to(
                tf.concat((tf.ones((num_beams), dtype=tf.bool), tf.zeros((num_beams), dtype=tf.bool)), axis=0),
                shape_list(eos_in_next_token),
            )

            # non-top `num_beams` eos tokens can't be used to finish a beam, but the others can't be used in the next
            # running sentences either
            running_topk_log_probs = topk_log_probs + tf.cast(eos_in_next_token, tf.float32) * -1.0e9

            # 5. Get running sequences scores for next
            # Determine the top k beam indices (from top 2*k beams) from log probs and gather top k beams
            # (from top 2*k beams).
            next_topk_indices = tf.math.top_k(running_topk_log_probs, k=num_beams)[1]
            next_running_sequences, next_running_scores, next_running_beam_indices = self._gather_beams(
                [topk_sequences, running_topk_log_probs, topk_beam_indices], next_topk_indices
            )

            # 6. Process topk logits
            # Further process log probs:
            # - add length penalty
            # - make sure no scores can be added anymore if beam is full
            # - make sure still running sequences cannot be chosen as finalized beam
            topk_log_probs = topk_log_probs / (
                tf.cast(cur_len + 1 - decoder_prompt_len, dtype=tf.float32) ** length_penalty
            )
            beams_in_batch_are_full = tf.broadcast_to(
                tf.math.reduce_all(is_sent_finished, axis=-1, keepdims=True), shape_list(did_topk_just_finished)
            ) & (early_stopping is True)
            add_penalty = ~did_topk_just_finished | beams_in_batch_are_full
            topk_log_probs += tf.cast(add_penalty, tf.float32) * -1.0e9

            # 7. Get scores, sequences, is sentence finished for next.
            # Combine sequences, scores, and flags along the beam dimension and compare new finished sequence scores
            # to existing finished scores and select the best from the new set of beams
            merged_sequences = tf.concat([sequences, topk_sequences], axis=1)
            merged_scores = tf.concat([scores, topk_log_probs], axis=1)
            merged_beams = tf.concat([beam_indices, topk_beam_indices], axis=1)
            merged_is_sent_finished = tf.concat([is_sent_finished, did_topk_just_finished], axis=1)
            topk_merged_indices = tf.math.top_k(merged_scores, k=num_beams)[1]
            next_sequences, next_scores, next_beam_indices, next_is_sent_finished = self._gather_beams(
                [merged_sequences, merged_scores, merged_beams, merged_is_sent_finished], topk_merged_indices
            )

            # 8. Prepare data for the next iteration
            # Determine the top k beam indices from the original set of all beams. With these, gather the top k
            # beam-associated caches.
            cur_len = cur_len + 1
            if "past_key_values" in model_outputs:
                cache = tf.nest.map_structure(
                    lambda tensor: unflatten_beam_dim(tensor, num_beams, batch_axis=cache_batch_axis),
                    model_outputs.past_key_values,
                )
                next_running_indices = self._gather_beams(topk_current_beam_indices, next_topk_indices)
                next_cache = self._gather_beams(cache, next_running_indices, batch_axis=cache_batch_axis)
                model_outputs["past_key_values"] = tf.nest.map_structure(
                    lambda tensor: flatten_beam_dim(tensor, batch_axis=cache_batch_axis), next_cache
                )

            if use_xla:
                next_model_kwargs = self._update_model_kwargs_for_xla_generation(
                    model_outputs=model_outputs,
                    model_kwargs=model_kwargs,
                    cur_len=cur_len,
                    max_length=max_length,
                    batch_size=(batch_size * num_beams),
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    batch_axis=cache_batch_axis,
                )
            else:
                next_model_kwargs = self._update_model_kwargs_for_generation(
                    model_outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
                )

                # if we don't cache past_key_values key values we need the whole input
                if model_kwargs.get("past_key_values", None) is None:
                    # let's throw out `past_key_values` since we don't want `None` tensors
                    model_kwargs.pop("past_key_values", None)

            return (
                cur_len,
                next_running_sequences,
                next_running_scores,
                next_running_beam_indices,
                next_sequences,
                next_scores,
                next_beam_indices,
                next_is_sent_finished,
                decoder_prompt_len,
                next_model_kwargs,
            )

        # 5. run generation
        # 1st generation step has to be run before to initialize `past_key_values` (if active)
        (
            cur_len,
            running_sequences,
            running_scores,
            running_beam_indices,
            sequences,
            scores,
            beam_indices,
            is_sent_finished,
            decoder_prompt_len,
            model_kwargs,
        ) = beam_search_body_fn(
            cur_len,
            running_sequences,
            running_scores,
            running_beam_indices,
            sequences,
            scores,
            beam_indices,
            is_sent_finished,
            decoder_prompt_len,
            model_kwargs,
        )

        # 2-to-n generation steps can then be run in autoregressive fashion (only in case 1st generation step does
        # NOT yield EOS token though)
        maximum_iterations = max_length - cur_len
        (
            cur_len,
            running_sequences,
            running_scores,
            running_beam_indices,
            sequences,
            scores,
            beam_indices,
            is_sent_finished,
            decoder_prompt_len,
            _,
        ) = tf.while_loop(
            beam_search_cond_fn,
            beam_search_body_fn,
            (
                cur_len,
                running_sequences,
                running_scores,
                running_beam_indices,
                sequences,
                scores,
                beam_indices,
                is_sent_finished,
                decoder_prompt_len,
                model_kwargs,
            ),
            maximum_iterations=maximum_iterations,
        )

        # 6. prepare outputs
        # Account for the edge-case where there are no finished sequences for a particular batch item. If so, return
        # running sequences for that batch item.
        none_finished = tf.math.reduce_any(is_sent_finished, axis=1)
        sequences = tf.where(none_finished[:, None, None], sequences, running_sequences)
        beam_indices = tf.where(none_finished[:, None, None], beam_indices, running_beam_indices)

        # Apply the length penalty so that running scores match the finalized scores if they are used
        running_scores = running_scores / (tf.cast(cur_len - decoder_prompt_len, dtype=tf.float32) ** length_penalty)
        scores = tf.where(none_finished[:, None], scores, running_scores)

        # Take best beams for each batch (the score is sorted in descending order)
        sequences = flatten_beam_dim(sequences[:, :num_return_sequences, :])
        scores = flatten_beam_dim(scores[:, :num_return_sequences])
        beam_indices = flatten_beam_dim(beam_indices[:, :num_return_sequences, :])

        if not use_xla:
            # Cut for backward compatibility
            sequences = sequences[:, :cur_len]
            beam_indices = beam_indices[:, : cur_len - decoder_prompt_len]

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
                encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
                encoder_hidden_states = (
                    model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
                )

                output_cls = TFBeamSampleEncoderDecoderOutput if do_sample else TFBeamSearchEncoderDecoderOutput
                return output_cls(
                    sequences=sequences,
                    sequences_scores=scores,
                    scores=all_scores,
                    beam_indices=beam_indices,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                output_cls = TFBeamSampleDecoderOnlyOutput if do_sample else TFBeamSearchDecoderOnlyOutput
                return output_cls(
                    sequences=sequences,
                    sequences_scores=scores,
                    scores=all_scores,
                    beam_indices=beam_indices,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return sequences

    def contrastive_search(
        self,
        input_ids: tf.Tensor,
        top_k: Optional[int] = 1,
        penalty_alpha: Optional[float] = 0,
        logits_processor: Optional[TFLogitsProcessorList] = None,
        logits_warper: Optional[TFLogitsProcessorList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        **model_kwargs,
    ) -> Union[TFContrastiveSearchOutput, tf.Tensor]:
        r"""
        Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
        be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.

        Parameters:
            input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            top_k (`int`, *optional*, defaults to 1):
                The size of the candidate set that is used to re-rank for contrastive search
            penalty_alpha (`float`, *optional*, defaults to 0):
                The degeneration penalty for contrastive search; activate when it is larger than 0
            logits_processor (`TFLogitsProcessorList`, *optional*):
                An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsProcessor`]
                used to modify the prediction scores of the language modeling head applied at each generation step.
            logits_warper (`TFLogitsProcessorList`, *optional*):
                An instance of [`TFLogitsProcessorList`]. List of instances of class derived from [`TFLogitsWarper`]
                used to warp the prediction score distribution of the language modeling head applied before multinomial
                sampling at each generation step.
            max_length (`int`, *optional*, defaults to 20):
                The maximum length of the sequence to be generated.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more details.
            output_hidden_states (`bool`, *optional*, defaults to `False`):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more details.
            output_scores (`bool`, *optional*, defaults to `False`):
                Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
            return_dict_in_generate (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            model_kwargs:
                Additional model specific keyword arguments will be forwarded to the `call` function of the model. If
                model is an encoder-decoder model the kwargs should include `encoder_outputs`.
        Return:
            [`~generation.TFContrastiveSearchDecoderOnlyOutput`],
            [`~generation.TFContrastiveSearchEncoderDecoderOutput`] or `tf.Tensor`: A `tf.Tensor` containing the
            generated tokens (default behaviour) or a [`~generation.TFContrastiveySearchDecoderOnlyOutput`] if
            `model.config.is_encoder_decoder=False` and `return_dict_in_generate=True` or a
            [`~generation.TFContrastiveSearchEncoderDecoderOutput`] if `model.config.is_encoder_decoder=True`.
        Examples:
        ```python
        >>> from transformers import AutoTokenizer, TFAutoModelForCausalLM

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
        >>> model = TFAutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        >>> # set pad_token_id to eos_token_id because OPT does not have a PAD token
        >>> model.config.pad_token_id = model.config.eos_token_id
        >>> input_prompt = "DeepMind Company is"
        >>> input_ids = tokenizer(input_prompt, return_tensors="tf")
        >>> outputs = model.contrastive_search(**input_ids, penalty_alpha=0.6, top_k=4, max_length=64)
        >>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
        ['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it']
        ```"""

        def gather_best_candidate(nested, selected_idx_stacked, batch_axis=0):
            """Gathers the slices indexed by selected_idx_stacked from a potentially nested structure of tensors."""

            def gather_fn(tensor):
                gathered_tensor = tf.gather(params=tensor, indices=selected_idx_stacked, axis=batch_axis)
                return gathered_tensor

            return tf.nest.map_structure(gather_fn, nested)

        # 1. init greedy_search values
        logits_processor = logits_processor if logits_processor is not None else TFLogitsProcessorList()
        logits_warper = logits_warper if logits_warper is not None else TFLogitsProcessorList()
        max_length = max_length if max_length is not None else self.generation_config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )
        use_cache = True  # In contrastive search, we always use cache
        model_kwargs.pop("use_cache", None)

        use_xla = not tf.executing_eagerly()
        # TODO (Joao): fix cache format or find programatic way to detect cache index
        # GPT2 and other models has a slightly different cache structure, with a different batch axis
        model_name = str(self.decoder) if "EncoderDecoder" in str(self) else str(self)
        cache_batch_axis = 1 if any(model_prefix in model_name for model_prefix in ("TFGPT2", "TFCTRL")) else 0

        # 2. init `attentions`, `hidden_states`, and `scores` tuples
        scores = [] if (return_dict_in_generate and output_scores) else None
        decoder_attentions = [] if (return_dict_in_generate and output_attentions) else None
        cross_attentions = [] if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = [] if (return_dict_in_generate and output_hidden_states) else None

        # 3. init tensors to use for "xla-compileable" generate function
        batch_size, cur_len = shape_list(input_ids)

        # initialize `generated` (`input_ids` padded with `pad_token_id`), `finished_sequences`
        input_ids_padding = tf.ones((batch_size, max_length - cur_len), dtype=tf.int32) * (pad_token_id or 0)
        generated = tf.concat([input_ids, input_ids_padding], axis=-1)
        finished_sequences = tf.zeros((batch_size,), dtype=tf.bool)

        # 4. define "xla-compile-able" stop-condition and auto-regressive function
        # define condition fn
        def contrastive_search_cond_fn(
            generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables
        ):
            """state termination condition fn."""
            return ~tf.reduce_all(finished_sequences)

        # define condition fn
        def contrastive_search_body_fn(
            generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables
        ):
            """state update fn."""

            # if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
            # (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
            if model_kwargs.get("past_key_values") is None:
                # prepare inputs
                model_inputs = self.prepare_inputs_for_generation(
                    generated[:, :cur_len], use_cache=use_cache, **model_kwargs
                )

                # encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
                # the `encoder_outputs`
                outputs = self(
                    **model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
                )

                # last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
                # previous tokens)
                if self.config.is_encoder_decoder:
                    last_hidden_states = outputs.decoder_hidden_states[-1]
                else:
                    last_hidden_states = outputs.hidden_states[-1]

                # XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across
                # iterations (with fixed shapes)
                if use_xla:
                    last_hidden_states = tf.pad(last_hidden_states, [[0, 0], [0, max_length - cur_len], [0, 0]])

                # next logit for contrastive search to select top-k candidate tokens
                logit_for_next_step = outputs.logits[:, -1, :]

                if use_xla:
                    model_kwargs = self._update_model_kwargs_for_xla_generation(
                        model_outputs=outputs,
                        model_kwargs=model_kwargs,
                        cur_len=cur_len,
                        max_length=max_length,
                        batch_size=batch_size,
                        is_encoder_decoder=self.config.is_encoder_decoder,
                        batch_axis=cache_batch_axis,
                    )
                else:
                    model_kwargs = self._update_model_kwargs_for_generation(
                        outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
                    )

                # Expands model inputs top_k times, for batched forward passes (akin to beam search).
                _, model_kwargs = self._expand_inputs_for_generation(
                    expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
                )

                past_key_values = model_kwargs.get("past_key_values")
                if past_key_values is None:
                    raise ValueError(
                        f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
                        "for contrastive search."
                    )
                elif (
                    not isinstance(past_key_values[0], (tuple, tf.Tensor))
                    or past_key_values[0][0].shape[0] != batch_size
                ):
                    raise ValueError(
                        f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
                        "used for contrastive search without further modifications."
                    )
            else:
                logit_for_next_step = next_step_cached_variables["logit_for_next_step"]
                last_hidden_states = next_step_cached_variables["last_hidden_states"]
                outputs = next_step_cached_variables["outputs"]

            # contrastive_search main logic start:
            # contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
            # degeneration penalty

            logit_for_next_step = logits_processor(generated, logit_for_next_step, cur_len)
            logit_for_next_step = logits_warper(generated, logit_for_next_step, cur_len)
            next_probs = stable_softmax(logit_for_next_step, axis=-1)
            top_k_probs, top_k_ids = tf.math.top_k(next_probs, k=top_k)

            # Store scores, attentions and hidden_states when required
            if not use_xla and return_dict_in_generate:
                if output_scores:
                    scores.append(logit_for_next_step)
                if output_attentions and self.config.is_encoder_decoder:
                    decoder_attentions.append(outputs.decoder_attentions)
                elif output_attentions and not self.config.is_encoder_decoder:
                    decoder_attentions.append(outputs.attentions)
                    if self.config.is_encoder_decoder:
                        cross_attentions.append(outputs.cross_attentions)

                if output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(outputs.decoder_hidden_states)
                elif output_hidden_states and self.config.is_encoder_decoder:
                    decoder_hidden_states.append(outputs.hidden_states)

            # Replicates the new past_key_values to match the `top_k` candidates
            model_kwargs["past_key_values"] = tf.nest.map_structure(
                lambda tensor: tf.repeat(tensor, top_k, axis=cache_batch_axis), model_kwargs["past_key_values"]
            )

            # compute the candidate tokens by the language model and collects their hidden_states
            next_model_inputs = self.prepare_inputs_for_generation(
                tf.reshape(top_k_ids, [-1, 1]), use_cache=use_cache, **model_kwargs
            )
            outputs = self(
                **next_model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
            )
            next_past_key_values = self._extract_past_from_model_output(outputs)

            logits = outputs.logits[:, -1, :]
            # name is different for encoder-decoder and decoder-only models
            if self.config.is_encoder_decoder:
                next_hidden = outputs.decoder_hidden_states[-1]
                full_hidden_states = outputs.decoder_hidden_states
            else:
                next_hidden = outputs.hidden_states[-1]
                full_hidden_states = outputs.hidden_states
            context_hidden = tf.repeat(last_hidden_states[:, :cur_len, :], top_k, axis=0)

            # compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
            # model confidence
            selected_idx = _ranking_fast(context_hidden, next_hidden, top_k_probs, penalty_alpha, top_k)

            # converts indices to a dimension of top_k to the stacked top_k * batch_size dimension, for indexing
            # without a need to reshape on tensors that have these two dimensions stacked
            selected_idx_stacked = selected_idx + tf.range(selected_idx.shape[0], dtype=tf.int64) * top_k

            # prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
            # the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
            # (model confidence minus degeneration penalty); (6) decoder hidden_states
            next_tokens = tf.gather(top_k_ids, selected_idx, axis=1, batch_dims=1)
            next_hidden = gather_best_candidate(next_hidden, selected_idx_stacked)

            # XLA: last_hidden_states normally grows at each step, but in XLA it is padded so as to be used across
            # iterations (with fixed shapes)
            if use_xla:
                last_hidden_states = dynamic_update_slice(last_hidden_states, next_hidden, [0, cur_len, 0])
            else:
                last_hidden_states = tf.concat([last_hidden_states, next_hidden], axis=1)

            next_decoder_hidden_states = gather_best_candidate(full_hidden_states, selected_idx_stacked)
            next_past_key_values = gather_best_candidate(
                next_past_key_values, selected_idx_stacked, batch_axis=cache_batch_axis
            )
            logit_for_next_step = gather_best_candidate(logits, selected_idx_stacked)

            # Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
            if self.config.is_encoder_decoder:
                next_step_cross_attentions = ()
                next_step_decoder_attentions = ()
                if output_attentions:
                    next_step_cross_attentions = gather_best_candidate(outputs.cross_attentions, selected_idx_stacked)
                    next_step_decoder_attentions = gather_best_candidate(
                        outputs.decoder_attentions, selected_idx_stacked
                    )
                outputs = TFSeq2SeqLMOutput(
                    past_key_values=next_past_key_values,
                    decoder_hidden_states=next_decoder_hidden_states,
                    decoder_attentions=next_step_decoder_attentions or None,
                    cross_attentions=next_step_cross_attentions or None,
                )
            else:
                next_step_attentions = ()
                if output_attentions:
                    next_step_attentions = gather_best_candidate(outputs.attentions, selected_idx_stacked)
                outputs = TFCausalLMOutputWithPast(
                    past_key_values=next_past_key_values,
                    hidden_states=next_decoder_hidden_states,
                    attentions=next_step_attentions or None,
                )
            # contrastive_search main logic end

            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                unfinished_seq = 1 - tf.cast(finished_sequences, tf.int32)
                next_tokens = next_tokens * unfinished_seq + pad_token_id * (1 - unfinished_seq)
                next_token_is_eos = tf.math.reduce_any(
                    tf.equal(
                        tf.broadcast_to(next_tokens, (len(eos_token_id), batch_size)), tf.expand_dims(eos_token_id, -1)
                    ),
                    axis=0,
                )
                finished_sequences = finished_sequences | next_token_is_eos

            # update `generated` and `cur_len`
            update_indices = tf.stack([tf.range(batch_size), tf.broadcast_to(cur_len, [batch_size])], axis=-1)
            generated = tf.tensor_scatter_nd_update(tensor=generated, indices=update_indices, updates=next_tokens)
            cur_len += 1

            if use_xla:
                # NOTE: 1) relative to other generation strategies, contrastive search is always running forward
                # passes one step ahead -- hence the `cur_len=cur_len + 1`; 2) the attention mask here is expanded from
                # [batch_size, ...] to [batch_size*top_k, ...] -- hence the `batch_size=batch_size * top_k`
                model_kwargs = self._update_model_kwargs_for_xla_generation(
                    model_outputs=outputs,
                    model_kwargs=model_kwargs,
                    cur_len=cur_len + 1,
                    max_length=max_length,
                    batch_size=batch_size * top_k,
                    is_encoder_decoder=self.config.is_encoder_decoder,
                    batch_axis=cache_batch_axis,
                )
            else:
                model_kwargs = self._update_model_kwargs_for_generation(
                    outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
                )

            next_step_cached_variables = {
                "logit_for_next_step": logit_for_next_step,
                "last_hidden_states": last_hidden_states,
                "outputs": outputs,
            }
            return generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables

        # 5. run generation
        # 1st generation step has to be run before to initialize `past_key_values`
        generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables = contrastive_search_body_fn(
            generated, finished_sequences, cur_len, model_kwargs, None
        )

        # 2-to-n generation steps can then be run in autoregressive fashion
        # only in case 1st generation step does NOT yield EOS token though
        maximum_iterations = max_length - cur_len
        generated, _, cur_len, _, _ = tf.while_loop(
            contrastive_search_cond_fn,
            contrastive_search_body_fn,
            (generated, finished_sequences, cur_len, model_kwargs, next_step_cached_variables),
            maximum_iterations=maximum_iterations,
        )

        # 6. prepare outputs
        if not use_xla:
            # cut for backward compatibility
            generated = generated[:, :cur_len]

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                # if model is an encoder-decoder, retrieve encoder attention weights
                # and hidden states
                encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
                encoder_hidden_states = (
                    model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
                )

                scores = tuple(scores) if scores is not None else None
                decoder_attentions = tuple(decoder_attentions) if decoder_attentions is not None else None
                cross_attentions = tuple(cross_attentions) if cross_attentions is not None else None
                decoder_hidden_states = tuple(decoder_hidden_states) if decoder_hidden_states is not None else None

                return TFContrastiveSearchEncoderDecoderOutput(
                    sequences=generated,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                return TFContrastiveSearchDecoderOnlyOutput(
                    sequences=generated,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return generated


def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
    """
    Filter a distribution of logits using top-k and/or nucleus (top-p) filtering

    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        top_k (`int`, *optional*, defaults to 0):
            If > 0, only keep the top k tokens with highest probability (top-k filtering)
        top_p (`float`, *optional*, defaults to 1.0):
            If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
            filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        min_tokens_to_keep (`int`, *optional*, defaults to 1):
            Minimumber of tokens we keep per batch example in the output.

    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    logits_shape = shape_list(logits)

    if top_k > 0:
        top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1])  # Safety check
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < tf.math.top_k(logits, k=top_k)[0][..., -1, None]
        logits = tf.where(indices_to_remove, filter_value, logits)
    if top_p < 1.0:
        sorted_indices = tf.argsort(logits, direction="DESCENDING")
        sorted_logits = tf.gather(
            logits, sorted_indices, axis=-1, batch_dims=1
        )  # expects logits to be of dim (batch_size, vocab_size)

        cumulative_probs = tf.math.cumsum(stable_softmax(sorted_logits, axis=-1), axis=-1)

        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs > top_p

        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove = tf.concat(
                [
                    tf.zeros_like(sorted_indices_to_remove[:, :min_tokens_to_keep]),
                    sorted_indices_to_remove[:, min_tokens_to_keep:],
                ],
                -1,
            )

        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove = tf.concat(
            [tf.zeros_like(sorted_indices_to_remove[:, :1]), sorted_indices_to_remove[:, :-1]],
            -1,
        )
        # scatter sorted tensors to original indexing
        indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove, sorted_indices)
        logits = tf.where(indices_to_remove, filter_value, logits)
    return logits


def scatter_values_on_batch_indices(values, batch_indices):
    shape = shape_list(batch_indices)
    # broadcast batch dim to shape
    broad_casted_batch_dims = tf.reshape(tf.broadcast_to(tf.expand_dims(tf.range(shape[0]), axis=-1), shape), [1, -1])
    # transform batch_indices to pair_indices
    pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0))
    # scatter values to pair indices
    return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), shape)


def sample_without_replacement(logits, num_samples):
    """
    categorical sampling without replacement is currently not implemented the gumbel-max trick will do for now see
    https://github.com/tensorflow/tensorflow/issues/9260 for more info
    """
    z = -tf.math.log(-tf.math.log(tf.random.uniform(shape_list(logits), 0, 1)))
    _, indices = tf.nn.top_k(logits + z, num_samples)
    return indices


def _ranking_fast(
    context_hidden: tf.Tensor,
    next_hidden: tf.Tensor,
    next_top_k_probs: tf.Tensor,
    alpha: float,
    beam_width: int,
) -> tf.Tensor:
    """
    Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
    in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
    row in the batch.
    """
    norm_context_hidden = context_hidden / tf.norm(context_hidden, axis=2, keepdims=True)
    norm_next_hidden = next_hidden / tf.norm(next_hidden, axis=2, keepdims=True)
    cosine_matrix = tf.squeeze(tf.linalg.matmul(norm_context_hidden, norm_next_hidden, transpose_b=True), axis=-1)
    degeneration_penalty = tf.reduce_max(cosine_matrix, axis=-1)
    next_top_k_probs = tf.reshape(next_top_k_probs, shape=[-1])
    contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
    contrastive_score = tf.reshape(contrastive_score, shape=[-1, beam_width])
    selected_idx = tf.argmax(contrastive_score, axis=1)
    return selected_idx